-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (230 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""
Retrain the YOLO model for your own dataset.
"""
import glob
import numpy as np
import tensorflow.keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
import warnings
import tensorflow as tf
warnings.filterwarnings('ignore')
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data
import os
import keras
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
DEPTH = 10
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# def get_session():
# """ Construct a modified tf session.
# """
# config = tf.compat.v1.ConfigProto()
# config.gpu_options.allow_growth = True
# return tf.compat.v1.Session(config=config)
def return_annotations_lines(training_folder):
output = []
for file in glob.glob(training_folder+"*.csv"):
with open(file) as f:
lines = f.readlines()
for line in lines:
output.append(line.replace("\n", ""))
return output
def _main():
training_folder = 'csv_folder/train/'
annotation_path = 'images/0finaltrain.csv'
log_dir = 'logs/000/'
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
class_names = get_classes(classes_path)
num_classes = len(class_names)
anchors = get_anchors(anchors_path)
input_shape = (608,608) # multiple of 32, hw
is_tiny_version = len(anchors)==6 # default setting
if is_tiny_version:
model = create_tiny_model(input_shape, anchors, num_classes,
freeze_body=0, weights_path='model_data/tiny_yolo_weights.h5')
else:
model = create_model(input_shape, anchors, num_classes,
freeze_body=0, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
logging = TensorBoard(log_dir=log_dir)
filepath='snapshot/YOLO_V3_{epoch:01d}.h5'
# checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
# monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, mode='min', save_weights_only = False)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='loss', min_delta=0, patience=10, verbose=1)
val_split = 0
lines = return_annotations_lines(training_folder)
# with open(annotation_path) as f:
# lines = f.readlines()
# np.random.seed(10101)
# np.random.shuffle(lines)
# np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
# Train with frozen layers first, to get a stable loss.
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
# if True:
# model.compile(optimizer=Adam(lr=1e-3), loss={
# # use custom yolo_loss Lambda layer.
# 'yolo_loss': lambda y_true, y_pred: y_pred})
# batch_size = 1
# print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
# model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
# steps_per_epoch=max(1, num_train//batch_size),
# validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
# validation_steps=max(1, num_val//batch_size),
# epochs=5,
# initial_epoch=0,
# callbacks=[logging, checkpoint])
# model.save_weights(log_dir + 'trained_weights_stage_1.h5')
# Unfreeze and continue training, to fine-tune.
# Train longer if the result is not good.
if True:
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
print('Unfreeze all of the layers.')
batch_size = 1 # note that more GPU memory is required after unfreezing the body
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=10000, #max(1, num_train//batch_size),
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=50,
initial_epoch=0,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
print("model training completed...")
model.save_weights(log_dir + 'trained_weights_final.h5')
print ("model saved...")
# Further training if needed.
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=0,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
# tf.compat.v1.keras.backend.set_session(get_session())
# keras.backend.tensorflow_backend.set_session(get_session())
image_input = Input(shape=(None, None, DEPTH))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
# if freeze_body in [1, 2]:
# # Freeze darknet53 body or freeze all but 3 output layers.
# num = (185, len(model_body.layers)-3)[freeze_body-1]
# for i in range(num): model_body.layers[i].trainable = False
# print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=0,
weights_path='model_data/tiny_yolo_weights.h5'):
'''create the training model, for Tiny YOLOv3'''
K.clear_session() # get a new session
# tf.compat.v1.keras.backend.set_session(get_session())
# keras.backend.tensorflow_backend.set_session(get_session())
image_input = Input(shape=(None, None, DEPTH))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
num_anchors//2, num_classes+5)) for l in range(2)]
model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
# if freeze_body in [1, 2]:
# # Freeze the darknet body or freeze all but 2 output layers.
# num = (20, len(model_body.layers)-2)[freeze_body-1]
# for i in range(num): model_body.layers[i].trainable = False
# print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
import cv2
from PIL import Image
import numpy as np
def get_depth_gray_image(annotation_lines):
input_shape = (608,608)
image_frame = []
for depth in range(DEPTH):
line = annotation_lines[depth].split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
image_data=0
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
gray = cv2.cvtColor(np.array(new_image), cv2.COLOR_BGR2GRAY)
image_frame.append( np.array(gray)/255.0)
# image_frame = np.array(image_frame)
# print ('image_stack size : ', image_frame.shape)
# new_image_gray = np.expand_dims(np.rollaxis(image_frame,0,3), axis=0)
# print ('get depth gray image : ', np.array(image_frame).shape)
return image_frame
def generator_input(image_frame, new_colored_image):
image_frame = image_frame[1:]
new_gray_image = cv2.cvtColor(np.array(new_colored_image), cv2.COLOR_BGR2GRAY)
image_frame.append(np.array(new_gray_image)/255.0)
inputs = np.expand_dims(np.rollaxis(np.array(image_frame),0,3), axis=0)
return image_frame, inputs
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
'''data generator for fit_generator'''
n = len(annotation_lines)
image_frame = get_depth_gray_image(annotation_lines)
i = 0
while True:
# image_data = []
box_data = []
for b in range(batch_size):
# if i==0:
# np.random.shuffle(annotation_lines)
image, box = get_random_data(annotation_lines, i, input_shape, random=False)
image_frame, inputs = generator_input(image_frame, image)
# image_data.append(image)
box_data.append(box)
i = (i+1) % n
if i >= (n - DEPTH): i = 0
# image_data = np.array(image_data)
# print('inputs : ', inputs.shape, ' image_frame shape:', np.array(image_frame).shape)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [inputs, *y_true], np.zeros(batch_size)
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
if __name__ == '__main__':
_main()