forked from ernestyalumni/Gravite
-
Notifications
You must be signed in to change notification settings - Fork 29
/
tutorial5.tex
302 lines (236 loc) · 10.5 KB
/
tutorial5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
\section{Lecture 5: Tangent Spaces}
lead question: ``what is the velocity of a curve $\gamma$ \@ point $p$?
\subsection{Velocities}
\begin{definition}
$(M,\mathcal{O},\mathcal{A})$ smooth mfd. \\
curve $\gamma : \mathbb{R} \to M$ at least $C^1$. \\
Suppose $\gamma(\lambda_0) =p$ \\
The \textbf{velocity} of $\gamma$ \@ $p$ is the linear map
\[
\begin{gathered}
v_{\gamma, p} : C^{\infty}(M) \xrightarrow{ \sim } \mathbb{R}
\end{gathered}
\]
$C^{\infty}(M) := \lbrace f: M \to \mathbb{R} | f \text{ smooth function } \rbrace$ equipped with $\begin{gathered} \quad \\
(f\oplus g)(p) := f(p) + g(p) \\
(\lambda \otimes g)(p) := \lambda \cdot g(p) \end{gathered}$
$\sim$ denotes linear map on top of $\xrightarrow{}$.
\[
f \mapsto v_{\gamma,p}(f):= (f\circ \gamma)'(\lambda_0)
\]
\end{definition}
intuition
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & M & \mathbb{R} \\
};
\path[->]
(m-1-1) edge node [auto] {$\gamma$} (m-1-2)
edge [bend right=40] node [auto] {$f\circ \gamma $} (m-1-3)
(m-1-2) edge node [auto] {$f $} (m-1-3);
\end{tikzpicture}
Schuller says: children run around the world. Temperature function as temperature contour lines. You feel the temperature. You observe the rate of change of temperature as you run around. $f$ is temperature.
\underline{past}: `` $\underbrace{v^i}_{} (\partial_i f) = (\underbrace{v^i \partial_i}_{\text{vector}})f$
\subsection{Tangent vector space}
\begin{definition}
For each point $p \in M$ \\
def the \textbf{set} ``tangent space $\neq_0 M$ \@ $p$ ``
\[
T_p M := \lbrace v_{\gamma, p} | \gamma \text{ smooth curves } \rbrace
\]
\end{definition}
\underline{picture}:\\
rather $M$ than (embedded) $p$ $T_pM$ EY : 20151109 see \url{https://youtu.be/pepU_7NJSGM?t=12m38s} for the picture
\underline{Observation}: $T_pM$ can be made into a vector space.
\[
\begin{aligned}
& \begin{aligned}
\oplus : & T_pM \times T_pM \to \\
& (v_{\gamma,p} \oplus v_{\delta,p})(\underbrace{f}_{ \in C^{\infty}(M)} ) := v_{\gamma,p}(f) +_{\mathbb{R}} v_{\delta,p}(f) \\
\end{aligned} \\
& \begin{aligned}
\odot : & \mathbb{R} \times T_pM \to \text{Hom}(C^{\infty}(\mathbb{R}),\mathbb{R}) \\
& (\alpha \odot v_{\gamma,p} )(f) := \alpha \cdot_{\mathbb{R}} v_{\gamma, p}(f)
\end{aligned}
\end{aligned}
\]
Remains to be shown that
\begin{enumerate}
\item[(i)] $\exists \, \sigma$ curve : $v_{\gamma,p} \oplus v_{\delta,p} = v_{\sigma,p}$
\item[(ii)] $\exists \, \tau $ curve : $\alpha \odot v_{\gamma,p} = v_{\tau,p}$
\end{enumerate}
\underline{Claim}: $\begin{aligned} & \quad \\
\tau : \mathbb{R}& \to M \\
& \mapsto \tau(\lambda) := \gamma(\alpha \lambda + \lambda_0) = (\gamma \circ \mu_{\alpha})(\lambda)
\end{aligned}$
where $\begin{aligned} & \quad \\
\mu_{\alpha}: & \mathbb{R} \to \mathbb{R} \\
& r \mapsto \alpha \cdot r + \lambda_0 \end{aligned}$,
does the trick.
$\tau(0) = \gamma(\lambda_0) =p$
\[
\begin{aligned}
v_{\tau,p} & := (f\circ \tau)'(0) = (f\circ \gamma \circ \mu_{\alpha} )'(0) \\
& = (f\circ \gamma)'(\lambda_0) \cdot \alpha = \\
& = \alpha \cdot v_{\gamma,p}
\end{aligned}
\]
Now for the sum: %(EY:20151109 ??)
$v_{\gamma,p} \oplus v_{\delta,p} \overset{?}{=} v_{\sigma, p} $
make a \underline{choice} of chart $(\underbrace{U}_{\ni p} , x)$ In cloud: ill definition alarm bells.
and define:
Claim:
\[
\begin{aligned}
& \sigma : \mathbb{R} \to M \\
& \sigma(\lambda) := x^{-1}( \underbrace{ (x\circ \gamma)(\lambda_0 + \lambda)}_{\mathbb{R} \to \mathbb{R}^d} + (x\circ \delta)(\lambda_1+ \lambda) - (x\circ \gamma)(\lambda_0) )
\end{aligned}
\]
does the trick.
\begin{proof}
Since:
\[
\begin{aligned}
\sigma_x(0) & = x^{-1}((x\circ \gamma)(\lambda_0) + (x\circ \delta)(\lambda_1) - (x\circ \gamma)(\lambda_0)) \\
& = \delta(\lambda_1) = p \end{aligned}
\]
Now:
\[
\begin{aligned}
v_{\sigma_x,p}(f) & := (f\circ \sigma_x)'(0) = \\
& = ( \underbrace{ (f\circ x^{-1}) }_{\mathbb{R}^d \to \mathbb{R}} \circ \underbrace{ (x\circ \sigma_x) }_{\mathbb{R} \to \mathbb{R}^d} )'(\gamma) = \underbrace{ (x\circ \sigma_x)'(0) }_{(x\circ \gamma)'(\lambda_0) + (x\circ \delta)'(\lambda_1) } \cdot \left( \partial_i (f\circ x^{-1}) \right)(x( \underbrace{ \sigma(0)}_{p} ) ) = \\
& = (x\circ \gamma)'(\lambda_0)(\partial_i (f\circ x^{-1}) )(x(p)) + (x\circ \delta)(\lambda_1)(\partial_i (f\circ x^{-1}) )(x(p)) \\
& = (f\circ \gamma)'(\lambda_0) + (f\circ \delta)'(\lambda_1) = \\
& = v_{\gamma,p}(f) + v_{\delta,p}(f) \quad \, \forall \, f \in C^{\infty}(M)
\end{aligned}
\]
\[
\boxed{ v_{\gamma,p} \oplus v_{\delta,p} = v_{\sigma, p} }
\]
\end{proof}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & M & \mathbb{R} \\
& \mathbb{R}^d & \\
};
\path[->]
(m-1-1) edge node [auto] {$\sigma$} (m-1-2)
edge node [auto] {$x\circ \sigma $} (m-2-2)
(m-1-2) edge node [auto] {$x $} (m-2-2)
edge node [auto] {$f$} (m-1-3)
(m-2-2) edge node [below] {$f\circ x^{-1}$} (m-1-3);
\end{tikzpicture}
\underline{picture}: (cf. \url{https://youtu.be/pepU_7NJSGM?t=39m5s})
\[
\begin{aligned}
\gamma : \mathbb{R} \to M \\
\delta : \mathbb{R} \to M \end{aligned}
\]
$(\gamma \oplus)(\lambda) := \gamma(\lambda) + \delta(\lambda)$
EY : 20151109 Schuller says adding trajectories is chart dependent, bad. Adding velocities is good.
\subsection{Components of a vector wrt a chart}
\begin{definition}
Let $(U,x) \in \mathcal{A}_{\text{smooth}}$. \\
Let $\begin{aligned} & \gamma : \mathbb{R} \to U \\
& \gamma(0) = p \end{aligned}$.
Calculate
\[
\begin{aligned}
v_{\gamma,p}(f) & := (f \circ \gamma)'(0) = (\underbrace{ (f\circ x^{-1}) }_{\mathbb{R}^d \to \mathbb{R} } \circ \underbrace{ (x\circ \gamma)}_{\mathbb{R} \to \mathbb{R}^d} )'(0) \\
& = \underbrace{ (x\circ \gamma)^{i'}(0) }_{\dot{\gamma}_x^i(0) } \cdot \underbrace{ (\partial_i(f\circ x^{-1} ) )(x(p)) }_{ =: \left( \frac{ \partial f}{ \partial x^i } \right)_p }
\end{aligned}
\]
think cloud $f:M\to \mathbb{R}$
\[
= \boxed{ \dot{\gamma}_x^i(0) \cdot \left( \frac{ \partial }{ \partial x^i} \right)_p } f \quad \, \forall \, f \in C^{\infty}(M)
\]
$\therefore$ as a map.
\[
v_{\gamma,p} \underbrace{=}_{\text{use of chart} } \underbrace{ \gamma_x^i(0) }_{ \text{ ``components of the velocity $v_{\gamma,p}$'' } } \underbrace{ \left( \frac{ \partial }{ \partial x^i} \right)}_{ \substack{ \text{ basis elements of the $T_pM$ wrt which the components need to be understood.} \\
\text{ ``chart induced basis of $T_pM$''} } }
\]
\end{definition}
Picture: \url{https://youtu.be/pepU_7NJSGM?t=1h16s}
\subsection{4. Chart-induced basis}
\begin{definition}
$(U,x) \in \mathcal{A}_{\text{smooth}}$ \\
the $\left( \frac{ \partial }{ \partial x^1} \right)_p , \dots , \left( \frac{ \partial }{ \partial x^d} \right)_p \in T_pU \subseteq T_pM$
constitute a \textbf{basis} of $T_pU$
\end{definition}
\begin{proof} remains: linearly independent
\[
\begin{gathered}
\lambda^i \left( \frac{ \partial }{ \partial x^i} \right)_p \overset{!}{=} 0 \\
\Longrightarrow \lambda^i \left( \frac{ \partial }{ \partial x^i} \right)_p(x^j) = \lambda^i \partial_i (\underbrace{ x^j \circ x^{-1} }_{} )( x(p)) = \\
= \lambda^i \delta_i^{\,\,j} = \lambda^j \quad \quad \, j = 1 , \dots , d
\end{gathered} \quad \quad \, \begin{gathered}
x^j \circ x^{-1} : \mathbb{R}^d \to \mathbb{R} \\
(\alpha^1 , \dots , \alpha^d) \mapsto \alpha^j
\end{gathered}
\]
in cloud: $x^j : U \to \mathbb{R}$ differentiable
\end{proof}
\begin{corollary}
$ \text{dim}T_pM = d = \text{dim}M$
\end{corollary}
\underline{Terminology}: $X \in T_pM$ $\to $ $\exists \, \gamma : \mathbb{R} \to M : X = v_{\gamma,p}$ and \\
\phantom{\underline{Terminology}:} $\exists \, \underbrace{ X_1^1 , \dots , X^d }_{\in \mathbb{R} } : X = X^i \left( \frac{ \partial }{ \partial x^i} \right)_p$
\subsection{5. Change of vector \emph{\underline{components}} under a change of chart}
\ding{56} vector does \textbf{not} change under change of chart.
Let $(U,x)$ and $(V,y)$ be overlapping charts and $p \in U\cap V$. \\
Let $X \in T_pM$
\[
X^i_{(y)}\cdot \left( \frac{ \partial }{ \partial y^i} \right)_p \underbrace{=}_{(V,y)} X \underbrace{=}_{ (U,x) } X^i_{x} \left( \frac{ \partial }{ \partial x^i} \right)_p
\]
to study change of components formula:
\[
\begin{aligned}
\left( \frac{ \partial }{ \partial x^i} \right)_p f & = \partial_i(f\circ x^{-1} )(x(p)) = \\
& = \partial_i (\underbrace{ (f\circ y^{-1}) }_{\mathbb{R}^d \to \mathbb{R} } \circ (\underbrace{ y\circ x^{-1}}_{\mathbb{R}^d \to \mathbb{R}^d} )(x(p)) \\
& = (\partial_i (y^i\circ x^{-1} ) )(x(p)) \cdot (\partial_j (f\circ y^{-1}) )(y(p)) = \\
& = \boxed{ \left( \frac{ \partial y^p}{ \partial x^i} \right)_p \cdot \left( \frac{ \partial f}{ \partial y^j} \right)_p } f
\end{aligned}
\]
\[
\begin{gathered}
\Longrightarrow X^i_{(x)} \left( \frac{ \partial y^j}{ \partial x^i} \right)_p \left( \frac{ \partial }{ \partial y^j} \right)_p = X^j_{(y)}\left( \frac{ \partial }{ \partial y^j} \right)_p \\
\Longrightarrow \boxed{ X^j_{(y)} = \left( \frac{ \partial y^j}{ \partial x^i} \right)_pX^i_{(x)} }
\end{gathered}
\]
\subsection{6. Cotangent spaces }
$T_pM = V$
trivial $(T_pM)^* := \lbrace \varphi : T_pM \xrightarrow{\sim} \mathbb{R} \rbrace$
\underline{Example}: $f\in C^{\infty}(M)$
\[
\begin{aligned}
(df)_p : & T_p M \xrightarrow{ \sim } \mathbb{R} \\
& X \mapsto (df)_p(X)
\end{aligned}
\]
i.e. $\boxed{ (df)_p \in T_pM^* } $
$(df)_p$ called the gradient of $f$ \@ $p\in M$.
Calculate components of gradient w.r.t. chart-induced basis $(U,x)$
\[
\begin{aligned}
\left( (df)_p \right)_j & := (df)_p\left( \left( \frac{ \partial }{ \partial x^j} \right)_p \right) \\
& = \left( \frac{ \partial f}{ \partial x^j } \right)_p = \partial_j (f\circ x^{-1} )(x(p))
\end{aligned}
\]
\begin{theorem}
Consider chart $(U,x) \Longrightarrow x^i : U \to \mathbb{R}$
\underline{Claim}: $(d x^1)_p, (dx^2)_p, \dots , (dx^d)_p$ basis of $T_p^*M$
$\Longrightarrow $ In fact: dual basis:
\[
(dx^a)_p \left( \left( \frac{ \partial }{ \partial x^b} \right)_p \right) = \left( \frac{ \partial x^a}{ \partial x^b} \right)_p = \dots = \delta_b^a
\]
\end{theorem}
\subsection{ 7. Change of \emph{ \underline{components} } of a covector under a change of chart: }
\[
\begin{gathered}
\underbrace{ T_p^*M }_{ \ni \omega} \text{ with }
\omega_{(y)} (dy^j)_p = \omega = \omega_{(x)i} (dx^i)_p \\
\Longrightarrow \boxed{ \omega_{(y)i} = \frac{ \partial x^j}{ \partial y^i } \omega_{(x)j } }
\end{gathered}
\]