forked from Aceticia/MRI_Lesion_Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
241 lines (198 loc) · 8.78 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
from torch.utils.data import DataLoader, Dataset, random_split
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
import os
import numpy as np
import nibabel as nib
from CNN import cnn_multi_dim, output_single
from transformer import MultiViewTransformer
from argparse import ArgumentParser
from torchmetrics import AUROC, MeanAbsoluteError
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
class FinetuneModel(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.save_hyperparameters(args)
# Load transformer, and potentially disable gradient
self.transformer = MultiViewTransformer(args)
self.transformer.load_state_dict(torch.load(args.transformer_checkpoint_path))
if not self.hparams.finetune_transformer:
for p in self.transformer.parameters():
p.requires_grad = False
self.transformer.eval()
in_size = self.hparams.n_hidden
# Load CNN model, and potentially disable gradient
self.cnn_models = nn.ModuleList([cnn_multi_dim(i, in_size) for i in range(3)])
loaded = torch.load(args.cnn_checkpoint_path)
for model_idx, model in enumerate(self.cnn_models):
model.load_state_dict(loaded[model_idx])
if not self.hparams.finetune_cnn:
for p in self.cnn_models.parameters():
p.requires_grad = False
self.cnn_models.eval()
# Output size from transformer is [B, T, 3, C]
mlps = [
nn.Linear(in_size, in_size),
nn.ReLU(),
]
# Classifier or regression
if self.hparams.classification:
self.train_metric = AUROC(num_classes=3)
self.test_metric = AUROC(num_classes=3)
self.val_metric = AUROC(num_classes=3)
self.loss = F.nll_loss
mlps.append(nn.Linear(in_size, 3))
else:
self.train_metric = MeanAbsoluteError()
self.test_metric = MeanAbsoluteError()
self.val_metric = MeanAbsoluteError()
self.loss = F.smooth_l1_loss
mlps += [nn.Linear(in_size, 1), nn.Sigmoid()]
# Finally instantiating the sequential
self.mlps = nn.Sequential(*mlps)
def configure_optimizers(self):
return torch.optim.AdamW(filter(lambda x: x.requires_grad, self.parameters()), lr=self.hparams.lr)
def forward(self, x):
# First pass through cnn
out = output_single(self.cnn_models, x).transpose(1, 2)
# Then pass through transformer
out = self.transformer(out)
# Average over the slice dimension
out = out.flatten(1, 2).mean(1)
# Finally through the MLP
out = self.mlps(out)
# adjust range to (0, 100) if we are doing regression
if not self.hparams.classification:
out = out*100
return out
def get_loss_metrics(self, input, target, stage):
# First get the output logits or regression output
pred = self(input)
pred_metric = pred
# If we are doing classification, nll loss needs log softmax and auroc needs softmax
if self.hparams.classification:
pred_metric = F.softmax(pred, dim=1)
pred = F.log_softmax(pred, dim=1)
else:
pred = pred.flatten()
pred_metric = pred_metric.flatten()
# Select the metric
metric = {
'train': self.train_metric,
'test': self.test_metric,
'val': self.val_metric,
}[stage]
# Evaluate metrics and loss
metric(pred_metric, target)
loss = self.loss(pred, target)
# Log the loss and metric for current stage
self.log(f'{stage}_loss', loss, on_step=True , on_epoch=True)
self.log(f'{stage}_metric', metric, on_step=True, on_epoch=True)
return loss
def training_step(self, batch, _):
return self.get_loss_metrics(batch[0], batch[1], 'train')
def test_step(self, batch, _):
return self.get_loss_metrics(batch[0], batch[1], 'test')
def validation_step(self, batch, _):
return self.get_loss_metrics(batch[0], batch[1], 'val')
def customToTensor(img):
if isinstance(img, np.ndarray):
img1 = torch.from_numpy(img)
img1 = resize_image(img, (150, 150, 200))
# backward compatibility
return img1.astype(np.float32)
def resize_image(img_array, trg_size):
res = np.resize(img_array, trg_size)
# type check
if type(res) != np.ndarray:
raise "type error!"
return res
class ADNIDataset(Dataset):
def __init__(self, root_dir, data_file, classification=True):
"""
Args:
root_dir (string): Directory of all the images.
data_file (string): File name of the train/test split file.
"""
self.root_dir = root_dir
self.lines = [x.split(',') for x in open(data_file).readlines()][1:]
self.classification = classification
self.label_file_idx = 2 if classification else 4
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
lst = self.lines[idx]
img_name = lst[0].strip('\"')
if self.classification:
img_label = lst[self.label_file_idx].strip('\"')
if img_label == 'AD':
label = 1
elif img_label == 'CN':
label = 0
elif img_label == 'MCI':
label = 2
else:
img_label = float(lst[self.label_file_idx].strip('\"'))
label = img_label
image_path = f'{os.path.join(self.root_dir, img_name)}.nii'
image = nib.load(image_path)
a = (image.get_fdata()) #convert to np array
a = customToTensor(a)
return a, label
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--random_seed", type=int, default=0)
parser.add_argument("--train_batch_size", type=int, default=4)
parser.add_argument("--eval_batch_size", type=int, default=4)
parser.add_argument("--adni_dataset", type=str, default='./adni_data')
parser.add_argument("--csv_file_loc", type=str, default='./ADNI1_Annual_2_Yr_3T_4_23_2022.csv')
parser.add_argument("--cnn_checkpoint_path", type=str, default='./cnn_checkpoints/checkpointat5.pth')
parser.add_argument("--transformer_checkpoint_path", type=str, default='./transformer_checkpoints/')
parser.add_argument("--model_checkpoint_path", type=str, default='./complete_checkpoints/')
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--finetune_cnn", type=int, default=1)
parser.add_argument("--finetune_transformer", type=int, default=1)
parser.add_argument("--classification", type=int, default=1)
parser.add_argument("--n_hidden", type=int, default=10)
parser.add_argument("--pretrained", type=int, default=0)
parser.add_argument("--train_ratio", type=float, default=1.)
parser.add_argument("--val_ratio", type=float, default=0.2)
parser.add_argument("--test_ratio", type=float, default=0.2)
# Add trainer specific arguments and parse them
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Apply random seed
pl.seed_everything(args.random_seed)
# First create the entire dataset
dataset = ADNIDataset(args.adni_dataset, args.csv_file_loc, args.classification)
# Split the dataset into train, test, and val
lengths = [int(args.val_ratio*len(dataset)), int(args.test_ratio*len(dataset))]
if args.train_ratio == 1:
lengths += [len(dataset)-sum(lengths)]
val_dataset, test_dataset, train_dataset = random_split(dataset, lengths)
else:
lengths += [int((len(dataset)-sum(lengths))*args.train_ratio)]
lengths += [len(dataset)-sum(lengths)]
val_dataset, test_dataset, train_dataset, _ = random_split(dataset, lengths)
# Instantiate the dataloders
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_batch_size, num_workers=8, shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.eval_batch_size, num_workers=8, shuffle=False)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, num_workers=8, shuffle=True)
# Instantiate the model
model = FinetuneModel(args)
# Initialize logger
wandb_logger = WandbLogger(project="MRI_project")
# Instantiate the trainer
trainer = Trainer.from_argparse_args(
args,
gpus=2,
strategy='ddp',
logger=wandb_logger)
# Actually train, with early stopping and checkpoint
trainer.fit(model, train_dataloader, val_dataloader)
# Finally, test using the best checkpoint
trainer.test(model, test_dataloader)