diff --git a/paper/paper.md b/paper/paper.md index 76dc5de..13d063f 100644 --- a/paper/paper.md +++ b/paper/paper.md @@ -150,16 +150,25 @@ options are implemented. The implemented models are listed below: ## Implemented regression models -- Lasso & Adaptive Lasso -- Group Lasso & Adaptive Group Lasso -- Sparse Group Lasso & Adaptive Sparse Group Lasso -- Ridged Group Lasso & Adaptive Ridge Group Lasso -- Best Subset Selection -- Ridged Best Subset Selection -- $\ell_0$ pseudo-norm regularized regression -- $\ell_0\ell_2$ mixed-norm regularized regression +The table below shows the regression models that are implemented in `sparse-lm` as well +as available implementations in other Python packages. + +| Model | `sparse-lm` | `celer` | `groupyr` | `group-lasso` | `skglm` | `abess` | +|:-----------------------------:|:-----------:|:-------:|:---------:|:--------------:|:-------:|:-------:| +| (Adaptive) Lasso | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| (Adaptive) Group Lasso | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| (Adaptive) Sparse Group Lasso | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| (Adaptive) Ridged Group Lasso | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| Best Subset Selection | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| Ridged Best Subset Selection | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| $\ell_0$ pseudo-norm | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | +| $\ell_0\ell_2$ mixed-norm | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ## Implemented model selection and composition tools + +In addition to the regression models in the table above, a few model selection and composition models +are also implemented. These models are listed below: + - One standard deviation rule grid search cross-validation - Line search cross-validation - Stepwise composite estimator