Skip to content

Latest commit

 

History

History
187 lines (134 loc) · 6.39 KB

README.md

File metadata and controls

187 lines (134 loc) · 6.39 KB

YOLO v5在光伏电池缺陷检测的应用

YOLO v5训练自己数据集详细教程

0.环境配置

安装必要的python package和配置相关环境

# python3.6
# torch==1.4.0
# torchvision==0.4.1

# git clone yolo v5 repo
 https://github.com/DataXujing/YOLO-v5.git # clone repo

# 安装必要的package
pip install -U -r requirements.txt

1.创建数据集的配置文件dataset.yaml

data/coco128.yaml来自于COCO train2017数据集的前128个训练图像,可以基于该yaml修改自己数据集的yaml文件

# train and val datasets (image directory or *.txt file with image paths)
train: ./datasets/score/images/train/
val: ./datasets/score/images/val/

# number of classes
nc: 3

# class names
names: ['Crack', 'BrokenGate', 'Chipping']

2.创建标注文件

可以使用LabelImg,Labme,Labelbox, CVAT来标注数据,对于目标检测而言需要标注bounding box即可。然后需要将标注转换为和darknet format相同的标注形式,每一个图像生成一个*.txt的标注文件(如果该图像没有标注目标则不用创建*.txt文件)。创建的*.txt文件遵循如下规则:

  • 每一行存放一个标注类别
  • 每一行的内容包括class x_center y_center width height
  • Bounding box 的坐标信息是归一化之后的(0-1)
  • class label转化为index时计数是从0开始的
def convert(size, box):
    '''
    将标注的xml文件标注转换为darknet形的坐标
    '''
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

每一个标注*.txt文件存放在和图像相似的文件目录下,只需要将/images/*.jpg替换为/lables/*.txt即可(这个在加载数据时代码内部的处理就是这样的,可以自行修改为VOC的数据格式进行加载)

例如:

datasets/score/images/train/000000109622.jpg  # image
datasets/score/labels/train/000000109622.txt  # label

3.组织训练集的目录

将训练集train和验证集val的images和labels文件夹按照如下的方式进行存放

Screen Shot 2020-04-01 at 11 44 26 AM

至此数据准备阶段已经完成,过程中我们假设算法工程师的数据清洗和数据集的划分过程已经自行完成。

4.选择模型backbone进行模型配置文件的修改

在项目的./models文件夹下选择一个需要训练的模型,这里我们选择yolov5s.yaml,最大的一个模型进行训练,参考官方README中的table,了解不同模型的大小和推断速度。如果你选定了一个模型,那么需要修改模型对应的yaml文件

# parameters
nc: 3  # number of classes   <------------------  UPDATE to match your dataset
depth_multiple: 0.75  # model depth multiple
width_multiple: 0.75  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 6, BottleneckCSP, [1024]],  # 10
  ]

# yolov5 head
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 11
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 12 (P5/32-large)

   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 17 (P4/16-medium)

   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 22 (P3/8-small)

   [[], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

5.Train

# Train yolov5x on score for 300 epochs

$ python train.py --img-size 640 --batch-size 16 --epochs 300 --data ./data/score.yaml --cfg ./models/score/yolov5s.yaml --weights weights/yolov5s.pt

训练的losses和评价指标被保存在Tensorboard和results.txtlog文件。results.txt在训练结束后会被可视化为results.png

>>> from utils.utils import plot_results
>>> plot_results()
# 如果你是用远程连接请安装配置Xming: https://blog.csdn.net/akuoma/article/details/82182913

Screen Shot 2020-04-01 at 11 44 26 AM

6.推断

$ python detect.py --source file.jpg  # image 
                            file.mp4  # video
                            ./dir  # directory
                            0  # webcam
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream
# inference  /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ 文件夹下的图像
$ python detect.py --source /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ --weights weights/best.pt --conf 0.1

$ python detect.py --source ./inference/images/ --weights weights/yolov5x.pt --conf 0.5

# inference  视频
$ python detect.py --source test.mp4 --weights weights/yolov5x.pt --conf 0.4

Screen Shot 2020-04-01 at 11 44 26 AM

Screen Shot 2020-04-01 at 11 44 26 AM

Reference

[1].https://github.com/ultralytics/yolov5

[2].https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

[3].https://github.com/DataXujing/YOLO-v5