Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

chore(algebra/order/ring/lemmas): remove useless lemmas, use namespace without_zero_le_one #16525

Closed
wants to merge 9 commits into from
2 changes: 1 addition & 1 deletion src/algebra/order/ring/defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -230,7 +230,7 @@ calc a + (2 + b) ≤ a + (a + a * b) :
... ≤ a * (2 + b) : by rw [mul_add, mul_two, add_assoc]

lemma one_le_mul_of_one_le_of_one_le (ha : 1 ≤ a) (hb : 1 ≤ b) : (1 : α) ≤ a * b :=
left.one_le_mul_of_le_of_le ha hb $ zero_le_one.trans ha
ha.trans (le_mul_of_one_le_right (zero_le_one.trans ha) hb)

section monotone
variables [preorder β] {f g : β → α}
Expand Down
280 changes: 89 additions & 191 deletions src/algebra/order/ring/lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -548,266 +548,164 @@ lemma mul_lt_iff_lt_one_left
a * b < b ↔ a < 1 :=
iff.trans (by rw [one_mul]) (mul_lt_mul_right b0)

/-! Lemmas of the form `1ba ≤ a * b`.
/-! Lemmas of the form `b1``a * b ≤ a`.

Variants with `< 0` and `≤ 0` instead of `0 <` and `0 ≤` appear in `algebra/order/ring/defs` (which
imports this file) as they need additional results which are not yet available here. -/

lemma mul_le_of_le_one_left [mul_pos_mono α] (hb : 0 ≤ b) (h : a ≤ 1) : a * b ≤ b :=
by simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb
lemma mul_le_of_le_one_right [pos_mul_mono α] (a0 : 0 ≤ a) (h : b ≤ 1) : a * b ≤ a :=
by simpa only [mul_one] using mul_le_mul_of_nonneg_left h a0

lemma le_mul_of_one_le_left [mul_pos_mono α] (hb : 0 ≤ b) (h : 1 ≤ a) : b ≤ a * b :=
by simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb
lemma le_mul_of_one_le_right [pos_mul_mono α] (a0 : 0 ≤ a) (h : 1 ≤ b) : a ≤ a * b :=
by simpa only [mul_one] using mul_le_mul_of_nonneg_left h a0

lemma mul_le_of_le_one_right [pos_mul_mono α] (ha : 0 ≤ a) (h : b ≤ 1) : a * b ≤ a :=
by simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha
lemma mul_le_of_le_one_left [mul_pos_mono α] (b0 : 0 ≤ b) (h : a ≤ 1) : a * b ≤ b :=
by simpa only [one_mul] using mul_le_mul_of_nonneg_right h b0

lemma le_mul_of_one_le_right [pos_mul_mono α] (ha : 0 ≤ a) (h : 1 ≤ b) : a ≤ a * b :=
by simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha
lemma le_mul_of_one_le_left [mul_pos_mono α] (b0 : 0 ≤ b) (h : 1 ≤ a) : b ≤ a * b :=
by simpa only [one_mul] using mul_le_mul_of_nonneg_right h b0

lemma mul_lt_of_lt_one_left [mul_pos_strict_mono α] (hb : 0 < b) (h : a < 1) : a * b < b :=
by simpa only [one_mul] using mul_lt_mul_of_pos_right h hb
lemma mul_lt_of_lt_one_right [pos_mul_strict_mono α] (a0 : 0 < a) (h : b < 1) : a * b < a :=
by simpa only [mul_one] using mul_lt_mul_of_pos_left h a0

lemma lt_mul_of_one_lt_left [mul_pos_strict_mono α] (hb : 0 < b) (h : 1 < a) : b < a * b :=
by simpa only [one_mul] using mul_lt_mul_of_pos_right h hb
lemma lt_mul_of_one_lt_right [pos_mul_strict_mono α] (a0 : 0 < a) (h : 1 < b) : a < a * b :=
by simpa only [mul_one] using mul_lt_mul_of_pos_left h a0

lemma mul_lt_of_lt_one_right [pos_mul_strict_mono α] (ha : 0 < a) (h : b < 1) : a * b < a :=
by simpa only [mul_one] using mul_lt_mul_of_pos_left h ha
lemma mul_lt_of_lt_one_left [mul_pos_strict_mono α] (b0 : 0 < b) (h : a < 1) : a * b < b :=
by simpa only [one_mul] using mul_lt_mul_of_pos_right h b0

lemma lt_mul_of_one_lt_right [pos_mul_strict_mono α] (ha : 0 < a) (h : 1 < b) : a < a * b :=
by simpa only [mul_one] using mul_lt_mul_of_pos_left h ha
lemma lt_mul_of_one_lt_left [mul_pos_strict_mono α] (b0 : 0 < b) (h : 1 < a) : b < a * b :=
by simpa only [one_mul] using mul_lt_mul_of_pos_right h b0

/-! Lemmas of the form `b ≤ c → a ≤ 1 → b * a ≤ c`. -/
/- Yaël: What's the point of these lemmas? They just chain an existing lemma with an assumption in
all possible ways, thereby artificially inflating the API and making the truly relevant lemmas hard
to find -/

lemma mul_le_of_le_of_le_one_of_nonneg [pos_mul_mono α] (h : b ≤ c) (ha : a ≤ 1) (hb : 0 ≤ b) :
b * a ≤ c :=
(mul_le_of_le_one_right hb ha).trans h

lemma mul_lt_of_le_of_lt_one_of_pos [pos_mul_strict_mono α] (bc : b ≤ c) (ha : a < 1) (b0 : 0 < b) :
b * a < c :=
(mul_lt_of_lt_one_right b0 ha).trans_le bc

lemma mul_lt_of_lt_of_le_one_of_nonneg [pos_mul_mono α] (h : b < c) (ha : a ≤ 1) (hb : 0 ≤ b) :
b * a < c :=
(mul_le_of_le_one_right hb ha).trans_lt h

/-- Assumes left covariance. -/
lemma left.mul_le_one_of_le_of_le [pos_mul_mono α] (ha : a ≤ 1) (hb : b ≤ 1) (a0 : 0 ≤ a) :
a * b ≤ 1 :=
mul_le_of_le_of_le_one_of_nonneg ha hb a0
lemma mul_le_one_of_le_of_le_left [pos_mul_mono α]
(ha : a ≤ 1) (hb : b ≤ 1) (a0 : 0 ≤ a) : a * b ≤ 1 :=
(mul_le_of_le_one_right a0 hb).trans ha

/-- Assumes left covariance. -/
lemma left.mul_lt_of_le_of_lt_one_of_pos [pos_mul_strict_mono α]
lemma mul_lt_one_of_le_of_lt_left [pos_mul_strict_mono α]
(ha : a ≤ 1) (hb : b < 1) (a0 : 0 < a) : a * b < 1 :=
mul_lt_of_le_of_lt_one_of_pos ha hb a0
(mul_lt_of_lt_one_right a0 hb).trans_le ha

/-- Assumes left covariance. -/
lemma left.mul_lt_of_lt_of_le_one_of_nonneg [pos_mul_mono α]
lemma mul_lt_one_of_lt_of_le_left [pos_mul_mono α]
(ha : a < 1) (hb : b ≤ 1) (a0 : 0 ≤ a) : a * b < 1 :=
mul_lt_of_lt_of_le_one_of_nonneg ha hb a0

lemma mul_le_of_le_of_le_one' [pos_mul_mono α] [mul_pos_mono α]
(bc : b ≤ c) (ha : a ≤ 1) (a0 : 0 ≤ a) (c0 : 0 ≤ c) : b * a ≤ c :=
(mul_le_mul_of_nonneg_right bc a0).trans $ mul_le_of_le_one_right c0 ha

lemma mul_lt_of_lt_of_le_one' [pos_mul_mono α] [mul_pos_strict_mono α]
(bc : b < c) (ha : a ≤ 1) (a0 : 0 < a) (c0 : 0 ≤ c) : b * a < c :=
(mul_lt_mul_of_pos_right bc a0).trans_le $ mul_le_of_le_one_right c0 ha

lemma mul_lt_of_le_of_lt_one' [pos_mul_strict_mono α] [mul_pos_mono α]
(bc : b ≤ c) (ha : a < 1) (a0 : 0 ≤ a) (c0 : 0 < c) : b * a < c :=
(mul_le_mul_of_nonneg_right bc a0).trans_lt $ mul_lt_of_lt_one_right c0 ha

lemma mul_lt_of_lt_of_lt_one_of_pos [pos_mul_mono α] [mul_pos_strict_mono α]
(bc : b < c) (ha : a ≤ 1) (a0 : 0 < a) (c0 : 0 ≤ c) : b * a < c :=
(mul_lt_mul_of_pos_right bc a0).trans_le $ mul_le_of_le_one_right c0 ha

/-! Lemmas of the form `b ≤ c → 1 ≤ a → b ≤ c * a`. -/

lemma le_mul_of_le_of_one_le_of_nonneg [pos_mul_mono α] (h : b ≤ c) (ha : 1 ≤ a) (hc : 0 ≤ c) :
b ≤ c * a :=
h.trans $ le_mul_of_one_le_right hc ha

lemma lt_mul_of_le_of_one_lt_of_pos [pos_mul_strict_mono α] (bc : b ≤ c) (ha : 1 < a) (c0 : 0 < c) :
b < c * a :=
bc.trans_lt $ lt_mul_of_one_lt_right c0 ha

lemma lt_mul_of_lt_of_one_le_of_nonneg [pos_mul_mono α] (h : b < c) (ha : 1 ≤ a) (hc : 0 ≤ c) :
b < c * a :=
h.trans_le $ le_mul_of_one_le_right hc ha
(mul_le_of_le_one_right a0 hb).trans_lt ha

/-- Assumes left covariance. -/
lemma left.one_le_mul_of_le_of_le [pos_mul_mono α] (ha : 1 ≤ a) (hb : 1 ≤ b) (a0 : 0 ≤ a) :
1 ≤ a * b :=
le_mul_of_le_of_one_le_of_nonneg ha hb a0

/-- Assumes left covariance. -/
lemma left.one_lt_mul_of_le_of_lt_of_pos [pos_mul_strict_mono α]
(ha : 1 ≤ a) (hb : 1 < b) (a0 : 0 < a) : 1 < a * b :=
lt_mul_of_le_of_one_lt_of_pos ha hb a0

/-- Assumes left covariance. -/
lemma left.lt_mul_of_lt_of_one_le_of_nonneg [pos_mul_mono α]
(ha : 1 < a) (hb : 1 ≤ b) (a0 : 0 ≤ a) : 1 < a * b :=
lt_mul_of_lt_of_one_le_of_nonneg ha hb a0

lemma le_mul_of_le_of_one_le' [pos_mul_mono α] [mul_pos_mono α]
(bc : b ≤ c) (ha : 1 ≤ a) (a0 : 0 ≤ a) (b0 : 0 ≤ b) : b ≤ c * a :=
(le_mul_of_one_le_right b0 ha).trans $ mul_le_mul_of_nonneg_right bc a0

lemma lt_mul_of_le_of_one_lt' [pos_mul_strict_mono α] [mul_pos_mono α]
(bc : b ≤ c) (ha : 1 < a) (a0 : 0 ≤ a) (b0 : 0 < b) : b < c * a :=
(lt_mul_of_one_lt_right b0 ha).trans_le $ mul_le_mul_of_nonneg_right bc a0

lemma lt_mul_of_lt_of_one_le' [pos_mul_mono α] [mul_pos_strict_mono α]
(bc : b < c) (ha : 1 ≤ a) (a0 : 0 < a) (b0 : 0 ≤ b) : b < c * a :=
(le_mul_of_one_le_right b0 ha).trans_lt $ mul_lt_mul_of_pos_right bc a0

lemma lt_mul_of_lt_of_one_lt_of_pos [pos_mul_strict_mono α] [mul_pos_strict_mono α]
(bc : b < c) (ha : 1 < a) (a0 : 0 < a) (b0 : 0 < b) : b < c * a :=
(lt_mul_of_one_lt_right b0 ha).trans $ mul_lt_mul_of_pos_right bc a0
lemma mul_lt_one_of_lt_of_lt_left [pos_mul_strict_mono α]
(ha : a < 1) (hb : b < 1) (a0 : 0 < a) : a * b < 1 :=
(mul_lt_of_lt_one_right a0 hb).trans ha

/-! Lemmas of the form `a ≤ 1 → b ≤ c → a * b ≤ c`. -/

lemma mul_le_of_le_one_of_le_of_nonneg [mul_pos_mono α] (ha : a ≤ 1) (h : b ≤ c) (hb : 0 ≤ b) :
a * b ≤ c :=
(mul_le_of_le_one_left hb ha).trans h

lemma mul_lt_of_lt_one_of_le_of_pos [mul_pos_strict_mono α] (ha : a < 1) (h : b ≤ c) (hb : 0 < b) :
a * b < c :=
(mul_lt_of_lt_one_left hb ha).trans_le h

lemma mul_lt_of_le_one_of_lt_of_nonneg [mul_pos_mono α] (ha : a ≤ 1) (h : b < c) (hb : 0 ≤ b) :
a * b < c :=
(mul_le_of_le_one_left hb ha).trans_lt h
/-- Assumes right covariance. -/
lemma mul_le_one_of_le_of_le_right [mul_pos_mono α]
(ha : a ≤ 1) (hb : b ≤ 1) (b0 : 0 ≤ b) : a * b ≤ 1 :=
(mul_le_of_le_one_left b0 ha).trans hb

/-- Assumes right covariance. -/
lemma right.mul_lt_one_of_lt_of_le_of_pos [mul_pos_strict_mono α]
lemma mul_lt_one_of_lt_of_le_right [mul_pos_strict_mono α]
(ha : a < 1) (hb : b ≤ 1) (b0 : 0 < b) : a * b < 1 :=
mul_lt_of_lt_one_of_le_of_pos ha hb b0
(mul_lt_of_lt_one_left b0 ha).trans_le hb

/-- Assumes right covariance. -/
lemma right.mul_lt_one_of_le_of_lt_of_nonneg [mul_pos_mono α]
lemma mul_lt_one_of_le_of_lt_right [mul_pos_mono α]
(ha : a ≤ 1) (hb : b < 1) (b0 : 0 ≤ b) : a * b < 1 :=
mul_lt_of_le_one_of_lt_of_nonneg ha hb b0

lemma mul_lt_of_lt_one_of_lt_of_pos [pos_mul_strict_mono α] [mul_pos_strict_mono α]
(ha : a < 1) (bc : b < c) (a0 : 0 < a) (c0 : 0 < c) : a * b < c :=
(mul_lt_mul_of_pos_left bc a0).trans $ mul_lt_of_lt_one_left c0 ha
(mul_le_of_le_one_left b0 ha).trans_lt hb

/-- Assumes right covariance. -/
lemma right.mul_le_one_of_le_of_le [mul_pos_mono α]
(ha : a ≤ 1) (hb : b ≤ 1) (b0 : 0 ≤ b) : a * b ≤ 1 :=
mul_le_of_le_one_of_le_of_nonneg ha hb b0
lemma mul_lt_one_of_lt_of_lt_right [mul_pos_strict_mono α]
(ha : a < 1) (hb : b < 1) (b0 : 0 < b) : a * b < 1 :=
(mul_lt_of_lt_one_left b0 ha).trans hb

namespace without_zero_le_one

lemma mul_le_of_le_one_of_le' [pos_mul_mono α] [mul_pos_mono α]
(ha : a ≤ 1) (bc : b ≤ c) (a0 : 0 ≤ a) (c0 : 0 ≤ c) : a * b ≤ c :=
(mul_le_mul_of_nonneg_left bc a0).trans $ mul_le_of_le_one_left c0 ha
/-! Lemmas of the form `b ≤ c → 1 ≤ a → b ≤ c * a`. -/

lemma mul_lt_of_lt_one_of_le' [pos_mul_mono α] [mul_pos_strict_mono α]
(ha : a < 1) (bc : b ≤ c) (a0 : 0 ≤ a) (c0 : 0 < c) : a * b < c :=
(mul_le_mul_of_nonneg_left bc a0).trans_lt $ mul_lt_of_lt_one_left c0 ha
/-- Assumes left covariance. -/
lemma one_le_mul_of_le_of_le_left [pos_mul_mono α]
(ha : 1 ≤ a) (hb : 1 ≤ b) (a0 : 0 ≤ a) : 1 ≤ a * b :=
ha.trans (le_mul_of_one_le_right a0 hb)

lemma mul_lt_of_le_one_of_lt' [pos_mul_strict_mono α] [mul_pos_mono α]
(ha : a ≤ 1) (bc : b < c) (a0 : 0 < a) (c0 : 0 ≤ c) : a * b < c :=
(mul_lt_mul_of_pos_left bc a0).trans_le $ mul_le_of_le_one_left c0 ha
/-- Assumes left covariance. -/
lemma one_lt_mul_of_le_of_lt_left [pos_mul_strict_mono α]
(ha : 1 ≤ a) (hb : 1 < b) (a0 : 0 < a) : 1 < a * b :=
ha.trans_lt (lt_mul_of_one_lt_right a0 hb)

/-! Lemmas of the form `1 ≤ a → b ≤ c → b ≤ a * c`. -/
/-- Assumes left covariance. -/
lemma one_lt_mul_of_lt_of_le_left [pos_mul_mono α]
(ha : 1 < a) (hb : 1 ≤ b) (a0 : 0 ≤ a) : 1 < a * b :=
ha.trans_le (le_mul_of_one_le_right a0 hb)

lemma lt_mul_of_one_lt_of_le_of_pos [mul_pos_strict_mono α] (ha : 1 < a) (h : b ≤ c) (hc : 0 < c) :
b < a * c :=
h.trans_lt $ lt_mul_of_one_lt_left hc ha
/-- Assumes left covariance. -/
lemma one_lt_mul_of_lt_of_lt_left [pos_mul_strict_mono α]
(ha : 1 < a) (hb : 1 < b) (a0 : 0 < a) : 1 < a * b :=
ha.trans (lt_mul_of_one_lt_right a0 hb)

lemma lt_mul_of_one_le_of_lt_of_nonneg [mul_pos_mono α] (ha : 1 ≤ a) (h : b < c) (hc : 0 ≤ c) :
b < a * c :=
h.trans_le $ le_mul_of_one_le_left hc ha
/-! Lemmas of the form `1 ≤ a → b ≤ c → b ≤ a * c`. -/

lemma lt_mul_of_one_lt_of_lt_of_pos [mul_pos_strict_mono α] (ha : 1 < a) (h : b < c) (hc : 0 < c) :
b < a * c :=
h.trans $ lt_mul_of_one_lt_left hc ha
/-- Assumes right covariance. -/
lemma one_le_mul_of_le_of_le_right [mul_pos_mono α]
(ha : 1 ≤ a) (hb : 1 ≤ b) (b0 : 0 ≤ b) : 1 ≤ a * b :=
hb.trans (le_mul_of_one_le_left b0 ha)

/-- Assumes right covariance. -/
lemma right.one_lt_mul_of_lt_of_le_of_pos [mul_pos_strict_mono α]
lemma one_lt_mul_of_lt_of_le_right [mul_pos_strict_mono α]
(ha : 1 < a) (hb : 1 ≤ b) (b0 : 0 < b) : 1 < a * b :=
lt_mul_of_one_lt_of_le_of_pos ha hb b0
hb.trans_lt (lt_mul_of_one_lt_left b0 ha)

/-- Assumes right covariance. -/
lemma right.one_lt_mul_of_le_of_lt_of_nonneg [mul_pos_mono α]
lemma one_lt_mul_of_le_of_lt_right [mul_pos_mono α]
(ha : 1 ≤ a) (hb : 1 < b) (b0 : 0 ≤ b) : 1 < a * b :=
lt_mul_of_one_le_of_lt_of_nonneg ha hb b0
hb.trans_le (le_mul_of_one_le_left b0 ha)

/-- Assumes right covariance. -/
lemma right.one_lt_mul_of_lt_of_lt [mul_pos_strict_mono α]
lemma one_lt_mul_of_lt_of_lt_right [mul_pos_strict_mono α]
(ha : 1 < a) (hb : 1 < b) (b0 : 0 < b) : 1 < a * b :=
lt_mul_of_one_lt_of_lt_of_pos ha hb b0
hb.trans (lt_mul_of_one_lt_left b0 ha)

end without_zero_le_one

end preorder

lemma lt_mul_of_one_lt_of_lt_of_nonneg [mul_pos_mono α] (ha : 1 ≤ a) (h : b < c) (hc : 0 ≤ c) :
b < a * c :=
h.trans_le $ le_mul_of_one_le_left hc ha
end mul_one_class

lemma lt_of_mul_lt_of_one_le_of_nonneg_left [pos_mul_mono α] (h : a * b < c) (hle : 1 ≤ b)
(ha : 0 ≤ a) :
a < c :=
(le_mul_of_one_le_right ha hle).trans_lt h
section mul_zero_one_class
variables [mul_zero_one_class α]

lemma lt_of_lt_mul_of_le_one_of_nonneg_left [pos_mul_mono α] (h : a < b * c) (hc : c ≤ 1)
(hb : 0 ≤ b) :
a < b :=
h.trans_le $ mul_le_of_le_one_right hb hc
section preorder
variables [preorder α]

lemma lt_of_lt_mul_of_le_one_of_nonneg_right [mul_pos_mono α] (h : a < b * c) (hb : b ≤ 1)
(hc : 0 ≤ c) :
a < c :=
h.trans_le $ mul_le_of_le_one_left hc hb
lemma left.zero_lt_one_of_pos [pos_mul_reflect_lt α]
(a0 : 0 < a) : (0 : α) < 1 :=
lt_of_mul_lt_mul_left ((mul_zero _).le.trans_lt (a0.trans_le (mul_one _).ge)) a0.le

lemma le_mul_of_one_le_of_le_of_nonneg [mul_pos_mono α] (ha : 1 ≤ a) (bc : b ≤ c) (c0 : 0 ≤ c) :
b ≤ a * c :=
bc.trans $ le_mul_of_one_le_left c0 ha
lemma right.zero_lt_one_of_pos [mul_pos_reflect_lt α]
(a0 : 0 < a) : (0 : α) < 1 :=
lt_of_mul_lt_mul_right ((zero_mul _).le.trans_lt (a0.trans_le (one_mul _).ge)) a0.le

/-- Assumes right covariance. -/
lemma right.one_le_mul_of_le_of_le [mul_pos_mono α] (ha : 1 ≤ a) (hb : 1 ≤ b) (b0 : 0 ≤ b) :
1 ≤ a * b :=
le_mul_of_one_le_of_le_of_nonneg ha hb b0

lemma le_of_mul_le_of_one_le_of_nonneg_left [pos_mul_mono α] (h : a * b ≤ c) (hb : 1 ≤ b)
(ha : 0 ≤ a) :
a ≤ c :=
(le_mul_of_one_le_right ha hb).trans h

lemma le_of_le_mul_of_le_one_of_nonneg_left [pos_mul_mono α] (h : a ≤ b * c) (hc : c ≤ 1)
(hb : 0 ≤ b) :
a ≤ b :=
h.trans $ mul_le_of_le_one_right hb hc

lemma le_of_mul_le_of_one_le_nonneg_right [mul_pos_mono α] (h : a * b ≤ c) (ha : 1 ≤ a)
(hb : 0 ≤ b) :
b ≤ c :=
(le_mul_of_one_le_left hb ha).trans h

lemma le_of_le_mul_of_le_one_of_nonneg_right [mul_pos_mono α] (h : a ≤ b * c) (hb : b ≤ 1)
(hc : 0 ≤ c) :
a ≤ c :=
h.trans $ mul_le_of_le_one_left hc hb
alias left.zero_lt_one_of_pos ← zero_lt_one_of_pos

end preorder

section linear_order
variables [linear_order α]

-- Yaël: What's the point of this lemma? If we have `0 * 0 = 0`, then we can just take `b = 0`.
-- proven with `a0 : 0 ≤ a` as `exists_square_le`
lemma exists_square_le' [pos_mul_strict_mono α] (a0 : 0 < a) : ∃ (b : α), b * b ≤ a :=
lemma exists_square_leₚ [pos_mul_strict_mono α]
(a0 : 0 ≤ a) : ∃ (b : α), b * b ≤ a :=
begin
rcases a0.eq_or_lt with rfl | a0, { exact ⟨0, by simp⟩, },
obtain ha | ha := lt_or_le a 1,
{ exact ⟨a, (mul_lt_of_lt_one_right a0 ha).le⟩ },
{ exact ⟨1, by rwa mul_one⟩ }
end

end linear_order
end mul_one_class

end mul_zero_one_class

section cancel_monoid_with_zero

Expand Down
6 changes: 3 additions & 3 deletions src/analysis/special_functions/bernstein.lean
Original file line number Diff line number Diff line change
Expand Up @@ -301,10 +301,10 @@ begin
: by conv_rhs
{ rw [mul_assoc, finset.mul_sum], simp only [←mul_assoc], }
-- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound
... = (2 * ‖f‖) * δ^(-2 : ℤ) * x * (1-x) / n
... = (2 * ‖f‖) * δ^(-2 : ℤ) * (x * (1-x)) / n
: by { rw variance npos, ring, }
... ≤ (2 * ‖f‖) * δ^(-2 : ℤ) / n
: (div_le_div_right npos).mpr $
by refine mul_le_of_le_of_le_one' (mul_le_of_le_one_right w₂ _) _ _ w₂; unit_interval
: (div_le_div_right npos).mpr $ mul_le_of_le_one_right w₂ $
by refine mul_le_one _ _ _; unit_interval
... < ε/2 : nh, }
end
Loading