```
${LG_Folder}
├── train.py
├── inference.py
├── preprocess.py
├── utils.py
├── dataloader.py
|
├── saved_models
| └── 46e_31.9065_s.pth
| └── 41e_32.1909_s.pth
|
├── submission
| └── submission.zip
|
├── data
| └── train_input_img
| └── train_label_img
| └── test_input_img
| └── train.csv
| └── test.csv
|
├── img
| └── augmented_img_xx.png
| └── original_img_xx.png
|
└── environment.yml
```
$ conda env create -n lg --file environment.yml
$ conda activate lg
$ pip install git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git
$ python preprocess.py
$ python train.py --gpu=0,1 --img_size=512 --batch_size=64 --exp_name=512_models
$ python train.py --gpu=0,1 --img_size=768 --batch_size=32 --exp_name=768_models
optional arguments:
--img_size: size image input, default 512
--num_workers: num workers of dataloader, default 8
--encoder_type: backbone model, default 'se_resnext50_32x4d'
--decoder_type: decoder model, default 'Unet'
--scheduler: scheduler type, default 'GradualWarmupSchedulerV2'
--encoder_lr: learning rate of encoder, default 3e-5
--min_lr: minimum learning rate, default 1e-6
--batch_size: batch size training, default 32
--weight_decay: weight decay, default 1e-6
--amp: use apex, default True
--gpu: gpu numbers
--exp_name: experiment name
$ python inference.py --gpu=0,1
optional arguments:
--gpu: gpu numbers
$ python sample_augmentation.py
실험 | CV | Public | Private | |
---|---|---|---|---|
v1 | Baseline (Input Resolution 512) | 31.52 | 30.56 | 31.12 |
v2 | +Aug | 31.90 | 30.93 | 31.07 |
v3 | +Aug + AdamP | 32.04 | 31.06 | 31.27 |
v4 | +Aug + AdamP + Loss | 32.19 | 30.93 | 31.41 |
v5 | +Aug + AdamP + Loss + Inference Resolution (512 -> 768) | 32.29 | 31.44 | 31.69 |
v6 | +Aug + AdamP + Loss + Inference Resolution (768 -> 1024) | 31.98 | 31.88 | 31.49 |
v7 | Ensemble (512model - v5 + 768model – v6) | 32.49 | 31.80 (+-0.08) | 31.80 (+-0.08) |