-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path3D_DenseNet_IN.py
286 lines (240 loc) · 11.2 KB
/
3D_DenseNet_IN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# -*- coding: utf-8 -*-
# 整个模型训练测试验证代码,并保存最优模型,打印测试数据
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from keras.models import Sequential, Model
from keras.layers import Convolution2D, MaxPooling2D, Conv3D, MaxPooling3D, ZeroPadding3D
from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization, Input
from keras.utils.np_utils import to_categorical
from sklearn.decomposition import PCA
from keras.optimizers import Adam, SGD, Adadelta, RMSprop, Nadam
import keras.callbacks as kcallbacks
from keras.regularizers import l2
import time
import collections
from sklearn import metrics, preprocessing
from Utils import zeroPadding, normalization, doPCA, modelStatsRecord, averageAccuracy, cnn_3D_IN, \
densenet_IN, densenet_IN_no_bottleneck_layer, cnn_3D_IN
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 产生新数据集的过程
# indexToAssignment(train_indices, whole_data.shape[0], whole_data.shape[1], PATCH_LENGTH)
# 训练集 ,151 ,151, 3
def indexToAssignment(index_, Row, Col, pad_length):
new_assign = {}
for counter, value in enumerate(index_):
# counter 是从0开始计数的,是具体的值
assign_0 = value // Col + pad_length
assign_1 = value % Col + pad_length
new_assign[counter] = [assign_0, assign_1]
return new_assign
def assignmentToIndex(assign_0, assign_1, Row, Col):
new_index = assign_0 * Col + assign_1
return new_index
def selectNeighboringPatch(matrix, pos_row, pos_col, ex_len):
selected_rows = matrix[range(pos_row - ex_len, pos_row + ex_len + 1), :]
selected_patch = selected_rows[:, range(pos_col - ex_len, pos_col + ex_len + 1)]
return selected_patch
# divide dataset into train and test datasets
def sampling(proptionVal, groundTruth):
labels_loc = {}
train = {}
test = {}
m = max(groundTruth)
print(m)
# 16
# 16类,对每一类样本要先打乱,然后再按比例分配,得到一个字典,因为上面是枚举,所以样本和标签的对应
for i in range(m):
indices = [j for j, x in enumerate(groundTruth.ravel().tolist()) if x == i + 1]
# print(indices)
# 每一类的样本数
np.random.shuffle(indices)
labels_loc[i] = indices
nb_val = int(proptionVal * len(indices))
train[i] = indices[:-nb_val]
test[i] = indices[-nb_val:]
# 将所有的训练样本存到train集合中,将所有的测试样本存到test集合中
train_indices = []
test_indices = []
for i in range(m):
train_indices += train[i]
test_indices += test[i]
np.random.shuffle(train_indices)
np.random.shuffle(test_indices)
print(len(test_indices))
# 8194
print(len(train_indices))
# 2055
return train_indices, test_indices
# 调用设计好的模型
def model_DenseNet():
model_dense = densenet_IN.ResnetBuilder.build_resnet_8((1, img_rows, img_cols, img_channels),
nb_classes)
RMS = RMSprop(lr=0.0003)
# Let's train the model using RMSprop
model_dense.compile(loss='categorical_crossentropy', optimizer=RMS, metrics=['accuracy'])
return model_dense
# 加载数据
# 修正的Indian pines数据集
mat_data = sio.loadmat('D:/Tensorflow Learning/3D-DenseNet-Hyperspectral/datasets/IN/Indian_pines_corrected.mat')
data_IN = mat_data['indian_pines_corrected']
# 标签数据
mat_gt = sio.loadmat('D:/Tensorflow Learning/3D-DenseNet-Hyperspectral/datasets/IN/Indian_pines_gt.mat')
gt_IN = mat_gt['indian_pines_gt']
# print('data_IN:',data_IN)
print(data_IN.shape)
# (145,145,200)
print(gt_IN.shape)
# (145,145)
# new_gt_IN = set_zeros(gt_IN, [1,4,7,9,13,15,16])
new_gt_IN = gt_IN
batch_size = 8
nb_classes = 16
nb_epoch = 15 # 400
img_rows, img_cols = 11, 11 # 27, 27
patience = 200
INPUT_DIMENSION_CONV = 200
INPUT_DIMENSION = 200
# 20%:10%:70% data for training, validation and testing
TOTAL_SIZE = 10249
VAL_SIZE = 1025
TRAIN_SIZE = 2055
TEST_SIZE = TOTAL_SIZE - TRAIN_SIZE
VALIDATION_SPLIT = 0.8 # 20% for trainnig and 80% for validation and testing
img_channels = 200
PATCH_LENGTH = 5 # Patch_size (13*2+1)*(13*2+1)
print(data_IN.shape[:2])
# (145,145)
print(np.prod(data_IN.shape[:2]))
# 21025
print(data_IN.shape[2:])
# (200,)
print(np.prod(data_IN.shape[2:]))
# 200
print(np.prod(new_gt_IN.shape[:2]))
# 21025
# 对数据进行reshape处理之后,进行scale操作
data = data_IN.reshape(np.prod(data_IN.shape[:2]), np.prod(data_IN.shape[2:]))
gt = new_gt_IN.reshape(np.prod(new_gt_IN.shape[:2]), )
# 标准化操作,即将所有数据沿行沿列均归一化道0-1之间
# 均值为 0 ,方差为 1
data = preprocessing.scale(data)
print(data.shape)
# (21025, 200)
# scaler = preprocessing.MaxAbsScaler()
# data = scaler.fit_transform(data)
# 对数据边缘进行填充操作,有点类似之前的镜像操作
data_ = data.reshape(data_IN.shape[0], data_IN.shape[1], data_IN.shape[2])
whole_data = data_
padded_data = zeroPadding.zeroPadding_3D(whole_data, PATCH_LENGTH)
print(padded_data.shape)
# (151, 151, 200)
# 因为选择的是7*7的滑动窗口,145*145,145/7余5,也就是说有5个像素点扫描不到,所有在长宽每边个填充3,也就是6,这样的话
# 就可以将所有像素点扫描到
ITER = 1
CATEGORY = 16
train_data = np.zeros((TRAIN_SIZE, 2 * PATCH_LENGTH + 1, 2 * PATCH_LENGTH + 1, INPUT_DIMENSION_CONV))
print(train_data.shape)
# (2055, 7, 7, 200)
test_data = np.zeros((TEST_SIZE, 2 * PATCH_LENGTH + 1, 2 * PATCH_LENGTH + 1, INPUT_DIMENSION_CONV))
print(test_data.shape)
# (8194, 7, 7, 200)
# 评价指标
KAPPA_3D_DenseNet = []
OA_3D_DenseNet = []
AA_3D_DenseNet = []
TRAINING_TIME_3D_DenseNet = []
TESTING_TIME_3D_DenseNet = []
ELEMENT_ACC_3D_DenseNet = np.zeros((ITER, CATEGORY))
# seeds = [1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229]
seeds = [1334]
for index_iter in range(ITER):
print("# %d Iteration" % (index_iter + 1))
# # 1 Iteration
# save the best validated model
# 使用easystopping通过一个动态阈值去选择最优的模型
best_weights_DenseNet_path = 'D:/Tensorflow Learning/3D-DenseNet-Hyperspectral/models-in-6-32/Indian_best_3D_DenseNet_1' + str(
index_iter + 1) + '.hdf5'
# 通过sampling函数拿到测试和训练样本
np.random.seed(seeds[index_iter])
train_indices, test_indices = sampling(VALIDATION_SPLIT, gt)
# train_indices 2055 test_indices 8094
# gt本身是标签类,从标签类中取出相应的标签 -1,转成one-hot形式
y_train = gt[train_indices] - 1
y_train = to_categorical(np.asarray(y_train))
y_test = gt[test_indices] - 1
y_test = to_categorical(np.asarray(y_test))
# 这个地方论文也解释了一下,是新建了一个以采集中心为主的新数据集,还是对元数据集进行了一些更改
train_assign = indexToAssignment(train_indices, whole_data.shape[0], whole_data.shape[1], PATCH_LENGTH)
for i in range(len(train_assign)):
train_data[i] = selectNeighboringPatch(padded_data, train_assign[i][0], train_assign[i][1], PATCH_LENGTH)
test_assign = indexToAssignment(test_indices, whole_data.shape[0], whole_data.shape[1], PATCH_LENGTH)
for i in range(len(test_assign)):
test_data[i] = selectNeighboringPatch(padded_data, test_assign[i][0], test_assign[i][1], PATCH_LENGTH)
# 拿到了新的数据集进行reshpae之后,数据处理就结束了
x_train = train_data.reshape(train_data.shape[0], train_data.shape[1], train_data.shape[2], INPUT_DIMENSION_CONV)
x_test_all = test_data.reshape(test_data.shape[0], test_data.shape[1], test_data.shape[2], INPUT_DIMENSION_CONV)
# 在测试数据集上进行验证和测试的划分
x_val = x_test_all[-VAL_SIZE:]
y_val = y_test[-VAL_SIZE:]
x_test = x_test_all[:-VAL_SIZE]
y_test = y_test[:-VAL_SIZE]
############################################################################################################
# 在这里对所使用模型进行设计,这代码不复用真实可耻
model_densenet = model_DenseNet()
# monitor:监视数据接口,此处是val_loss,patience是在多少步可以容忍没有提高变化
earlyStopping6 = kcallbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=1, mode='auto')
# 用户每次epoch最后都会保存模型,如果save_best_only=True,那么最近验证误差最后的数据将会被保存下来
saveBestModel6 = kcallbacks.ModelCheckpoint(best_weights_DenseNet_path, monitor='val_loss', verbose=1,
save_best_only=True,
mode='auto')
# 训练和验证
tic6 = time.clock()
print(x_train.shape, x_test.shape)
# (2055,7,7,200) (7169,7,7,200)
history_3d_densenet = model_densenet.fit(
x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], x_train.shape[3], 1), y_train,
validation_data=(x_val.reshape(x_val.shape[0], x_val.shape[1], x_val.shape[2], x_val.shape[3], 1), y_val),
batch_size=batch_size,
nb_epoch=nb_epoch, shuffle=True, callbacks=[earlyStopping6, saveBestModel6])
toc6 = time.clock()
# 测试
tic7 = time.clock()
loss_and_metrics = model_densenet.evaluate(
x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], x_test.shape[3], 1), y_test,
batch_size=batch_size)
toc7 = time.clock()
print('3D DenseNet Time: ', toc6 - tic6)
print('3D DenseNet Test time:', toc7 - tic7)
print('3D DenseNet Test score:', loss_and_metrics[0])
print('3D DenseNet Test accuracy:', loss_and_metrics[1])
# print(history_3d_densenet.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# 预测
pred_test = model_densenet.predict(
x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], x_test.shape[3], 1)).argmax(axis=1)
# 跟踪值出现的次数
collections.Counter(pred_test)
gt_test = gt[test_indices] - 1
# print(len(gt_test))
# 8194
# 这是测试集,验证和测试还没有分开
overall_acc = metrics.accuracy_score(pred_test, gt_test[:-VAL_SIZE])
confusion_matrix = metrics.confusion_matrix(pred_test, gt_test[:-VAL_SIZE])
each_acc, average_acc = averageAccuracy.AA_andEachClassAccuracy(confusion_matrix)
kappa = metrics.cohen_kappa_score(pred_test, gt_test[:-VAL_SIZE])
KAPPA_3D_DenseNet.append(kappa)
OA_3D_DenseNet.append(overall_acc)
AA_3D_DenseNet.append(average_acc)
TRAINING_TIME_3D_DenseNet.append(toc6 - tic6)
TESTING_TIME_3D_DenseNet.append(toc7 - tic7)
ELEMENT_ACC_3D_DenseNet[index_iter, :] = each_acc
print("3D DenseNet finished.")
print("# %d Iteration" % (index_iter + 1))
# 自定义输出类
modelStatsRecord.outputStats(KAPPA_3D_DenseNet, OA_3D_DenseNet, AA_3D_DenseNet, ELEMENT_ACC_3D_DenseNet,
TRAINING_TIME_3D_DenseNet, TESTING_TIME_3D_DenseNet,
history_3d_densenet, loss_and_metrics, CATEGORY,
'D:/Tensorflow Learning/3D-DenseNet-Hyperspectral/records-in-6-32/IN_train_3D_10_.txt',
'D:/Tensorflow Learning/3D-DenseNet-Hyperspectral/records-in-6-32/IN_train_3D_element_10_.txt')