-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpartialEqFull.v
66 lines (49 loc) · 1.77 KB
/
partialEqFull.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
Require Import fullImpliesPartial.
Require Import partialImpliesFull.
(*specifies that T is a source program*)
Fixpoint initialPool T :=
match T with
|Single(None,nil,e) => True
|_ => False
end.
(*specifies that T has reached a terminal state*)
Fixpoint Done T :=
match T with
|Single(None,nil,v) => value v
|Par T1 T2 => Done T1 /\ Done T2
|_ => False
end.
(*if T is done and T' is ahead of T, then T = T'*)
Theorem DoneAheadOf : forall H T T',
Done T -> poolAheadOf H T T' ->
T = T'.
Proof.
intros. induction H1.
{inv H1. auto. inv H0. }
{inv H0. rewrite IHpoolAheadOf1; auto. rewrite IHpoolAheadOf2; auto. }
Qed.
(*the initial pool can trivially be rewound*)
Theorem rewindInitPool : forall T C H,
initialPool T -> poolRewind C H T.
Proof.
intros. destruct T. destruct t. destruct p. destruct o.
inv H0. destruct l. constructor. inv H0. inv H0.
Qed.
(*If T is an initial pool, then it is trivially ahead of itself*)
Theorem AheadOfInitPool : forall H T, initialPool T -> poolAheadOf H T T.
Proof.
intros. destruct T. destruct t. destruct p. destruct o.
inv H0. destruct l. repeat constructor. inv H0. inv H0.
Qed.
(*partial abort and full abort are equivalent*)
Theorem partialEqFull : forall C H T C' H' T',
initialPool T -> Done T' ->
(p_multistep C H T C' H' T' <->
f_multistep C H T C' H' T').
Proof.
intros. split; intros.
{apply partialImpliesFullMulti. auto. apply rewindInitPool. auto. }
{eapply fullImpliesPartialMulti in H2. invertHyp.
copy H4. apply DoneAheadOf in H4; auto. subst x. eauto. apply AheadOfInitPool.
auto. apply rewindInitPool. auto. }
Qed.