-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblob_utils.py
executable file
·113 lines (86 loc) · 3.41 KB
/
blob_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
def dog_filter(image, s1xy=18.0, s1z=10.0, s2xy=26.0, s2z=14.0):
from scipy.signal import fftconvolve
import logging
import coloredlogs
import numpy as np
logger = logging.getLogger(__name__)
logging.basicConfig(format='[%(funcName)s] - %(asctime)s - %(message)s', level=logging.INFO)
coloredlogs.install(level='DEBUG', logger=logger)
logger.info('preparing DoG kernel...')
sizexy = int(s2xy) * 2 - 1
sizez = int(s2z) * 2 - 1
dog_kernel = np.zeros((sizez, sizexy, sizexy))
metaxy = (sizexy - 1) / 2
metaz = (sizez - 1) / 2
for x in np.arange(sizexy):
for y in np.arange(sizexy):
for z in np.arange(sizez):
dog_kernel[z, y, x] = np.exp(
- ((x - metaxy) ** 2 + (y - metaxy) ** 2) / s1xy ** 2 - ((z - metaz) / s1z) ** 2) / \
(s1xy * s1xy * s1z) - np.exp(
- ((x - metaxy) ** 2 + (y - metaxy) ** 2) / s2xy ** 2 -
((z - metaz) / s2z) ** 2) / (s2xy * s2xy * s2z)
logger.info('filtering image...')
conv = fftconvolve(image, dog_kernel, mode='same')
return conv
def blob_detector(image, s1xy=18.0, s1z=10.0, s2xy=26.0, s2z=14.0, threshold=300):
import logging
import coloredlogs
from skimage.feature import peak_local_max
logger = logging.getLogger(__name__)
logging.basicConfig(format='[%(funcName)s] - %(asctime)s - %(message)s', level=logging.INFO)
coloredlogs.install(level='DEBUG', logger=logger)
logger.info('processing image...')
conv = dog_filter(image, s1xy, s1z, s2xy, s2z)
peak = peak_local_max(conv, threshold_abs=threshold)
return peak
def draw_balls(shape, peak, radius):
import logging
import coloredlogs
import numpy as np
logger = logging.getLogger(__name__)
logging.basicConfig(format='[%(funcName)s] - %(asctime)s - %(message)s', level=logging.INFO)
coloredlogs.install(level='DEBUG', logger=logger)
logger.info('creating ball...')
axis = np.arange(-radius, radius + 1)
x, y, z = np.meshgrid(axis, axis, axis)
ball = np.heaviside((radius ** 2 - x ** 2 - y ** 2 - z ** 2), 1)
logger.info('drawing balls on image...')
image = np.zeros(shape)
for line in peak[:]:
mx = line[0] - radius
my = line[1] - radius
mz = line[2] - radius
Mx = line[0] + radius + 1
My = line[1] + radius + 1
Mz = line[2] + radius + 1
if (mx > 0) and (my > 0) and (mz > 0) and (Mx < shape[0]) and (My < shape[1]) and (Mz < shape[2]):
image[mx:Mx, my:My, mz:Mz] += ball
return image
def compare_points(p1, p2, threshold):
#p1 is the computed point cloud, p2 the ground truth
import logging
import coloredlogs
import numpy as np
from scipy.spatial import KDTree
logger = logging.getLogger(__name__)
logging.basicConfig(format='[%(funcName)s] - %(asctime)s - %(message)s', level=logging.INFO)
coloredlogs.install(level='DEBUG', logger=logger)
if len(p2.shape) == 1:
p2 = np.tile(p2, (2,1))
t2 = KDTree(p2)
tp = []
fn = []
fp = []
for point in p1[:]:
match = t2.query(point, k=1)
if match[0] < threshold:
tp.append(point)
p2 = np.delete(p2, match[1], 0)
t2 = KDTree(p2)
else:
fp.append(point)
for point in p2[:]:
fn.append(point)
return tp, fp, fn