Skip to content

Latest commit

 

History

History
72 lines (60 loc) · 3.37 KB

README.md

File metadata and controls

72 lines (60 loc) · 3.37 KB

3D Structure Tensor Analysis

This repository includes a Structure Tensor Analysis (STA) tool for the characterization of local 3D orientation in TIFF image stacks, based on the evaluation of local image intensity gradients. The present tool also provides a full analysis of local gradient strength, structure disarray, shape and fractional anisotropy indices.

Python 3 Script

st_analysis.py
saves a NumPy structured array including the information below for each (valid) data block in the input TIFF stack

  • EW: structure tensor eigenvalues w (in descending order)
  • EV: structure tensor eigenvectors v
  • STRENGTH: gradient strength (w1 .=. w2 .=. w3)
  • CILINDRICAL_DIM: cylindrical shape size (w1 .=. w2 >> w3)
  • PLANAR_DIM: planar shape size (w1 >> w2 .=. w3)
  • FA: fractional anisotropy index
  • LOCAL_DISARRAY: local disarray index
  • LOCAL_DISARRAY_W: local disarray index weighted by fractional anisotropy

(optional) saves local disarray and fractional anisotropy data to .csv file

(optional) saves data histograms to image files

(optional) saves disarray and fractional anisotropy maps to image files

Python Modules

custom_image_base_tool.py
custom_tool_kit.py
disarray_tools.py


Configuration

The parameter values of the STA algorithm must be assigned through a .txt configuration file stored within the input image file directory.
They are listed below with their definition:

Optical System
  • px_size_xy: in-plane pixel size [μm]
  • px_size_z: through-plane pixel size [μm]
  • fwhm_xy: in-plane FWHM of the optical system PSF [μm]
  • fwhm_z: through-plane FWHM of the optical system PSF [μm]
STA Resolution
  • roi_xy_pix: in-plane STA data block size [pixel]
    (roi_z_pix = roi_xy_pix * px_size_xy / px_size_z is applied for isotropic resolution )
Data Selection
  • mode_ratio: flag defining the thresholding strategy for pre-selecting the data blocks fed to the algorithm
    • 0 -> 'non_zero_ratio', i.e. the minimum ratio of non-zero pixels allowed in the data block
    • 1 -> 'mean', i.e. the minimum mean graylevel allowed in the data block
  • threshold_on_cell_ratio: threshold value applied to each data block before the STA is run
    (e.g. 0.75 for 'non_zero_ratio', or 10 for 'mean')
Local Disarray Analysis
  • local_disarray_xy_side: in-plane mask size for analyzing the local disarray in the resulting vector maps [pixel]
  • local_disarray_z_side: through-plane local disarray mask size [pixel]
  • neighbours_lim: minimum number of valid neighbouring data blocks enabling the local disarray evaluation

Example

To execute the program from the command line run:

python3 st_analysis.py -s stack_name.tif -p sta_param.txt

Other input arguments not shown in the present example can be accessed via the script --help option.

As in the example above, the -p keyword must be used to assign the algorithm configuration by means of the text file sta_param.txt. A sample content of this file is reported below:

px_size_xy = 0.439              # [um]
px_size_z  = 1                  # [um]
fwhm_xy    = 0.731              # [um]
fwhm_z     = 3.09               # [um]
roi_xy_pix = 92                 # [pixel]
mode_ratio = 0                  # 'non_zero_ratio' thresholding mode
threshold_on_cell_ratio = 0.85  # 85% non-zero pixel threshold