forked from SYSU-SAIL/ArbSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
214 lines (174 loc) · 7.19 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import math
import matplotlib
matplotlib.use('TKAgg')
import utility
import torch
import numpy as np
from decimal import Decimal
class Trainer():
def __init__(self, args, loader, my_model, my_loss, ckp):
self.args = args
self.scale = args.scale
self.ckp = ckp
self.loader_train = loader.loader_train
self.loader_test = loader.loader_test
self.model = my_model
self.loss = my_loss
self.optimizer = utility.make_optimizer(args, self.model)
self.scheduler = utility.make_scheduler(args, self.optimizer)
if self.args.load != '.':
self.optimizer.load_state_dict(
torch.load(os.path.join(ckp.dir, 'optimizer.pt'))
)
for _ in range(len(ckp.log)): self.scheduler.step()
self.error_last = 1e8
def train(self):
self.scheduler.step()
self.loss.step()
epoch = self.scheduler.last_epoch + 1
self.loss.start_log()
self.model.train()
timer_data, timer_model = utility.timer(), utility.timer()
# train on integer scale factors (x2, x3, x4) for 1 epoch to maintain stability
if epoch == 1:
self.loader_train.dataset.first_epoch = True
# adjust learning rate
lr = 5e-5
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
# train on all scale factors for remaining epochs
else:
self.loader_train.dataset.first_epoch = False
# adjust learning rate
lr = self.args.lr * (2 ** -(epoch // 30))
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
self.ckp.write_log('[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr)))
for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
lr, hr = self.prepare(lr, hr)
scale = hr.size(2) / lr.size(2)
scale2 = hr.size(3) / lr.size(3)
timer_data.hold()
self.optimizer.zero_grad()
# inference
self.model.get_model().set_scale(scale, scale2)
sr = self.model(lr)
# loss function
loss = self.loss(sr, hr)
# backward
if loss.item() < self.args.skip_threshold * self.error_last:
loss.backward()
self.optimizer.step()
else:
print('Skip this batch {}! (Loss: {})'.format(
batch + 1, loss.item()
))
timer_model.hold()
if (batch + 1) % self.args.print_every == 0:
self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
(batch + 1) * self.args.batch_size,
len(self.loader_train.dataset),
self.loss.display_loss(batch),
timer_model.release(),
timer_data.release()))
timer_data.tic()
self.loss.end_log(len(self.loader_train))
self.error_last = self.loss.log[-1, -1]
target = self.model
torch.save(
target.state_dict(),
os.path.join(self.ckp.dir, 'model', 'model_{}.pt'.format(epoch))
)
def test(self):
self.model.eval()
with torch.no_grad():
for idx_scale, _ in enumerate(self.scale):
self.loader_test.dataset.set_scale(idx_scale)
scale = self.args.scale[idx_scale]
scale2 = self.args.scale2[idx_scale]
eval_psnr = 0
eval_ssim = 0
for idx_img, (lr, hr, filename, _) in enumerate(self.loader_test):
filename = filename[0]
# prepare LR & HR images
no_eval = (hr.nelement() == 1)
if not no_eval:
lr, hr = self.prepare(lr, hr)
else:
lr, = self.prepare(lr)
lr, hr = self.crop_border(lr, hr, scale, scale2)
# inference
self.model.get_model().set_scale(scale, scale2)
sr = self.model(lr)
# evaluation
sr = utility.quantize(sr, self.args.rgb_range)
save_list = [sr]
if not no_eval:
eval_psnr += utility.calc_psnr(
sr, hr, [scale, scale2], self.args.rgb_range,
benchmark=self.loader_test.dataset.benchmark
)
eval_ssim += utility.calc_ssim(
sr, hr, [scale, scale2],
benchmark=self.loader_test.dataset.benchmark
)
# save SR results
if self.args.save_results:
self.ckp.save_results(filename, save_list, scale)
if scale == scale2:
print('[{} x{}]\tPSNR: {:.3f} SSIM: {:.4f}'.format(
self.args.data_test,
scale,
eval_psnr / len(self.loader_test),
eval_ssim / len(self.loader_test),
))
else:
print('[{} x{}/x{}]\tPSNR: {:.3f} SSIM: {:.4f}'.format(
self.args.data_test,
scale,
scale2,
eval_psnr / len(self.loader_test),
eval_ssim / len(self.loader_test),
))
def prepare(self, *args):
device = torch.device('cpu' if self.args.cpu else 'cuda')
def _prepare(tensor):
if self.args.precision == 'half': tensor = tensor.half()
return tensor.to(device)
return [_prepare(a) for a in args]
def crop_border(self, img_lr, img_hr, scale, scale2):
N, C, H_lr, W_lr = img_lr.size()
N, C, H_hr, W_hr = img_hr.size()
H = H_lr if round(H_lr * scale) <= H_hr else math.floor(H_hr / scale)
W = W_lr if round(W_lr * scale2) <= W_hr else math.floor(W_hr / scale2)
step = []
for s in [scale, scale2]:
if s == int(s):
step.append(1)
elif s * 2 == int(s * 2):
step.append(2)
elif s * 5 == int(s * 5):
step.append(5)
elif s * 10 == int(s * 10):
step.append(10)
elif s * 20 == int(s * 20):
step.append(20)
elif s * 50 == int(s * 50):
step.append(50)
H_new = H // step[0] * step[0]
if H_new % 2 == 1:
H_new = H // (step[0] * 2) * step[0] * 2
W_new = W // step[1] * step[1]
if W_new % 2 == 1:
W_new = W // (step[1] * 2) * step[1] * 2
img_lr = img_lr[:, :, :H_new, :W_new]
img_hr = img_hr[:, :, :round(scale * H_new), :round(scale2 * W_new)]
return img_lr, img_hr
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
epoch = self.scheduler.last_epoch + 1
return epoch >= self.args.epochs