-
Notifications
You must be signed in to change notification settings - Fork 27
Fortran API Reference
FTI Datatypes
FTI Constants
FTI_Init
FTI_InitType
FTI_Protect
FTI_Checkpoint
FTI_Status
FTI_Recover
FTI_Snapshot
FTI_Finalize
FTI datatypes are used in the C-API function FTI_Protect
. With the count
parameter and the datatype, FTI is able to determine the size of the allocated memory region at ptr
.
The FTI Fortran interface defines a template of FTI_Protect
for all intrinsic data types. Hence the datatype definitions are not necessary here and are not avalable for the Fortran interface.
FTI_BUFS
: 256
FTI_DONE
: 1
FTI_SCES
: 0
FTI_NSCS
: -1
FTI_NREC
: -2
- Reads configuration file.i
- Creates checkpoint directories.
- Detects topology of the system.
- Regenerates data upon recovery.
DEFINITION
subroutine FTI_Init ( config_file, global_comm, err )
ARGUMENTS
Variable | What for? | |
---|---|---|
character config_file |
IN | Path to the config file |
integer global_comm |
IN/OUT | MPI communicator used for the execution |
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
ierr | Reason |
---|---|
FTI_SCES |
Success |
FTI_NSCS |
No Success |
FTI_NREC |
FTI couldn't recover ckpt files, no recovery possible |
DESCRIPTION
This function initializes the FTI context. It should be called before other FTI
functions, right after MPI initialization. The MPI communicator passed, must be declared as integer, target
.
EXAMPLE
integer, target :: rank, nbProcs, err, FTI_comm_world
call MPI_Init(err)
FTI_comm_world = MPI_COMM_WORLD
call FTI_Init('config.fti', FTI_comm_world, err) ! modifies FTI_comm_world
call MPI_Comm_size(FTI_comm_world, nbProcs, err)
call MPI_Comm_rank(FTI_comm_world, rank, err)
- Initializes a data type.
DEFINITION
subroutine FTI_InitType ( type_F, size_F, err )
ARGUMENTS
Variable | What for? | |
---|---|---|
type(FTI_type) type_F |
IN | The data type to be initialized |
integer size_F |
IN | The size of the data type to be initialized |
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
err | Reason |
---|---|
FTI_SCES |
Success |
FTI_NSCS |
No Success |
DESCRIPTION
This function initializes a data type. A variable’s type which is not an intrinsic Fortran data-type must be added using this function before adding this variable to the protected variables.
EXAMPLE
!...
type polar
real :: radius
real :: phi
end type
type(FTI_Type) :: FTI_Polar
type(polar), target :: choord
type(polar), pointer :: choord_ptr
type(c_ptr) :: choord_c_ptr
choord_ptr => choord
choord_c_ptr = c_loc(choord)
! ...
call FTI_InitType(FTI_Polar, int(sizeof(choord),4), ierr)
! ...
- Stores metadata concerning the variable to protect.
In the Fortran interface, FTI_Protect
comes with two different function headers.
One may be used for intrinsic Fortran types and the other must be used for derived data-types.
DEFINITION
subroutine FTI_Protect ( id, data, err ) !> For intrinsic data-types
subroutine FTI_Protect ( id, data_ptr, count_F, type_F, err ) !> For derived data-types
ARGUMENTS (intrinsic types)
Variable | What for? | |
---|---|---|
integer id |
IN | Unique ID of the variable to protect |
Fortran type, pointer data |
IN | Pointer to memory address of variable |
integer err |
OUT | Token for FTI error code. |
ARGUMENTS (derived types)
Variable | What for? | |
---|---|---|
integer id |
IN | Unique ID of the variable to protect |
type(c_ptr) data_ptr |
IN | Pointer to memory address of variable |
integer count_F |
IN | Number of elements. |
tape(FTI_Type) type_F |
IN | FTI_Type of Derived data-type. |
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
err | Reason |
---|---|
FTI_SCES |
Success |
FTI_NSCS |
Number of protected variables is > FTI_BUFS
|
DESCRIPTION
This function should be used to add data structures to the list of protected
variables. This list of structures is the data that will be stored during a
checkpoint and loaded during a recovery. When the size of a variable changes
during execution, a subsequent call to FTI_Protect
, updates the size for the protected variable. The call is necessary to communicate the change in size to FTI.
EXAMPLE
For Fortran intrinsic data-types:
! ...
integer, target :: nbProcs, iter, row, col, err, FTI_comm_world
integer, pointer :: ptriter
real(8), pointer :: g(:,:)
call MPI_Init(err)
FTI_comm_world = MPI_COMM_WORLD
call FTI_Init('config.fti', FTI_comm_world, err) ! modifies FTI_comm_world
call MPI_Comm_size(FTI_comm_world, nbProcs, err)
row = sqrt((MEM_MB * 1024.0 * 512.0 * nbProcs)/8)
col = (row / nbProcs)+3
allocate( g(row, col) )
allocate( h(row, col) )
! INIT DATA ...
ptriter => iter
call FTI_Protect(0, ptriter, err)
call FTI_Protect(2, g, err)
! ...
For derived data-types
! ...
use iso_c_binding
type polar
real :: radius
real :: phi
end type
type(FTI_Type) :: FTI_Polar
integer, parameter :: N=128*1024*25 !> 25 MB / Process
integer, parameter :: N1 = 128
integer, parameter :: N2 = 1024
integer, parameter :: N3 = 25
integer, target :: FTI_COMM_WORLD
integer :: ierr, status
type(polar), dimension(:,:,:), pointer :: arr
type(c_ptr) :: arr_c_ptr
allocate(arr(N1,N2,N3))
shape = (/ N1, N2, N3 /)
arr_c_ptr = c_loc( arr( &
lbound(arr,1), &
lbound(arr,2), &
lbound(arr,3)))
!> INITIALIZE MPI AND FTI
call MPI_Init(ierr)
FTI_COMM_WORLD = MPI_COMM_WORLD
call FTI_Init('config.fti', FTI_COMM_WORLD, ierr)
call FTI_InitType(FTI_Polar, int(2*sizeof(1.0),4), ierr)
!> PROTECT DATA AND ITS SHAPE
call FTI_Protect(0, arr_c_ptr, size(arr), FTI_Polar, ierr)
! ...
- Writes values of protected runtime variables to a checkpoint file of requested level.
DEFINITION
subroutine FTI_Checkpoint ( id_F, level, err )
ARGUMENTS
Variable | What for? | |
---|---|---|
integer id_F |
IN | Unique checkpoint ID |
integer level |
IN | Checkpoint level (1=L1, 2=L2, 3=L3, 4=L4) |
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
err | Reason |
---|---|
FTI_DONE |
Success |
FTI_NSCS |
Failure |
DESCRIPTION
This function is used to store current values of protected variables into a checkpoint file. Depending on the checkpoint level file is stored in local, partner node or global directory. Checkpoint’s id must be different from 0.
EXAMPLE
The handling is identical to the C case, except that in Fortran it is a subroutine and not a function, hence:
! ...
!> LEVEL 2 CHECKPOINT, ID = 1
call FTI_Checkpoint(1, 2, err)
! ...
- Provides the reallocation of memory on FTI API side for protected variables upon a restart.
DEFINITION
subroutine FTI_Realloc ( id, data, err ) !> For intrinsic data-types
subroutine FTI_Realloc ( id, data_ptr, err ) !> For derived data-types
ARGUMENTS (intrinsic types)
Variable | What for? | |
---|---|---|
integer id |
IN | Unique ID of the variable to protect |
Fortran type, pointer data |
IN/OUT | Pointer to memory address of variable |
integer err |
OUT | Token for FTI error code. |
ARGUMENTS (derived types)
Variable | What for? | |
---|---|---|
integer id |
IN | Unique ID of the variable to protect |
type(c_ptr) data_ptr |
IN/OUT | Pointer to memory address of variable |
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
err | Reason |
---|---|
FTI_SCES |
Success |
FTI_NSCS |
No success |
DESCRIPTION
For the case that a protected variable changed its size or dimension, before the invokation of FTI_Recover
during the restart, the pointed memory region has to be re-allocated. This may be done using FTI_Realloc
.
NOTE: The whole allocated memory is accessable only in the first dimension of the returned array. I.e.
A_old -> A_new(1:size(A_old),1,1,...)
EXAMPLE
For intrinsic data-types:
! ...
integer, parameter :: N1=128*1024*25 !> 25 MB / Process
integer, parameter :: N2=128*1024*50 !> 50 MB / Process
integer, parameter :: N11 = 128
integer, parameter :: N12 = 1024
integer, parameter :: N13 = 25
integer, parameter :: N21 = 128
integer, parameter :: N22 = 1024
integer, parameter :: N23 = 50
integer, target :: FTI_COMM_WORLD
integer :: ierr, status
real(dp), dimension(:,:,:), pointer :: arr
real(dp), dimension(:,:,:), pointer :: tmp
integer, dimension(:), pointer :: shape
allocate(arr(N11,N12,N13))
allocate(shape(3))
!> INITIALIZE MPI AND FTI
call MPI_Init(ierr)
FTI_COMM_WORLD = MPI_COMM_WORLD
call FTI_Init('config.fti', FTI_COMM_WORLD, ierr)
!> PROTECT DATA AND ITS SHAPE
call FTI_Protect(0, arr, ierr)
call FTI_Protect(1, shape, ierr)
call FTI_Status(status)
!> EXECUTE ON RESTART
if ( status .eq. 1 ) then
!> REALLOCATE TO SIZE AT CHECKPOINT
call FTI_Realloc(0, arr, ierr)
print *, ierr
call FTI_recover(ierr)
!> RESHAPE ARRAY
arr(1:shape(1),1:shape(2),1:shape(3)) => arr(1:size(arr),1,1)
! ...
end if
! ...
!> FIRST CHECKPOINT
call FTI_Checkpoint(1, 1, ierr)
! ...
!> CHANGE ARRAY DIMENSION
!> AND STORE IN SHAPE ARRAY
shape = [N21,N22,N23]
allocate(tmp(N21,N22,N23))
tmp(1:N11,1:N12,1:N13) = arr
deallocate(arr)
arr => tmp
!> TELL FTI ABOUT THE NEW DIMENSION
call FTI_Protect(0, arr, ierr)
! ...
!> SECOND CHECKPOINT
call FTI_Checkpoint(2,1, ierr)
! ...
For derived data-types:
! ...
use iso_c_binding
! ...
type polar
real :: radius
real :: phi
end type
type(FTI_Type) :: FTI_Polar
integer, parameter :: N1=128*102*25 !> 25 MB / Process
integer, parameter :: N2=128*102*50 !> 50 MB / Process
integer, parameter :: N11 = 128
integer, parameter :: N12 = 102
integer, parameter :: N13 = 25
integer, parameter :: N21 = 128
integer, parameter :: N22 = 102
integer, parameter :: N23 = 50
integer, target :: FTI_COMM_WORLD
integer :: ierr, status
type(polar), dimension(:,:,:), pointer :: arr
type(c_ptr) :: arr_c_ptr
type(polar), dimension(:,:,:), pointer :: tmp
integer, dimension(:), pointer :: shape
allocate(arr(N11,N12,N13))
allocate(shape(3))
!> INITIALIZE C POINTER
arr_c_ptr = c_loc( arr( &
lbound(arr,1), &
lbound(arr,2), &
lbound(arr,3)))
! ...
!> PROTECT DATA AND ITS SHAPE
call FTI_Protect(0, arr_c_ptr, size(arr), FTI_Polar, ierr)
call FTI_Protect(1, shape, ierr)
call FTI_Status(status)
!> EXECUTE ON RESTART
if ( status .eq. 1 ) then
!> REALLOCATE TO SIZE AT CHECKPOINT
call FTI_Realloc(0, arr_c_ptr, ierr)
call FTI_recover(ierr)
!> RESHAPE ARRAY
call c_f_pointer(arr_c_ptr, arr, shape)
! ...
end if
! ...
!> FIRST CHECKPOINT
call FTI_Checkpoint(1, 1, ierr)
! ...
!> CHANGE ARRAY DIMENSION
!> AND STORE IN SHAPE ARRAY
shape = [N21,N22,N23]
allocate(tmp(N21,N22,N23))
tmp(1:N11,1:N12,1:N13) = arr
deallocate(arr)
arr => tmp
! ...
!> UPDATE C POINTER BEFORE CALL TO 'FTI_Protect'
arr_c_ptr = c_loc( arr( &
lbound(arr,1), &
lbound(arr,2), &
lbound(arr,3)))
!> TELL FTI ABOUT THE NEW DIMENSION
call FTI_Protect(0, arr_c_ptr, size(arr), FTI_Polar, ierr)
! ...
!> SECOND CHECKPOINT
call FTI_Checkpoint(2,1, ierr)
! ...
- Returns the current status of the recovery flag.
DEFINITION
subroutine FTI_Status ( status )
ARGUMENTS
Variable | What for? | |
---|---|---|
integer status |
OUT | Token for status flag. |
OUTPUT
Value | Reason |
---|---|
0 |
No checkpoints taken yet or recovered successfully |
1 |
At least one checkpoint is taken. If execution fails, the next start will be a restart |
2 |
The execution is a restart from checkpoint level L4 and keep_last_checkpoint was enabled during the last execution |
DESCRIPTION
This function returns the current status of the recovery flag.
EXAMPLE
call FTI_Status(status)
!> EXECUTE ON RESTART
if ( status .eq. 1 ) then
! ...
call FTI_recover(ierr)
! ...
end if
- Loads checkpoint data from the checkpoint file and initializes the runtime variables of the execution.
DEFINITION
subroutine FTI_Recover ( err )
ARGUMENTS
Variable | What for? | |
---|---|---|
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
Value | Reason |
---|---|
FTI_SCES |
Success |
FTI_NSCS |
Failure |
DESCRIPTION
This function loads the checkpoint data from the checkpoint file and it up-
dates some basic checkpoint information. It should be called after initial-
ization of protected variables after a failure. see FTI_Realloc for the case that the variable size vary during execution. In that case FTI_Realloc
has to be invoked before the call to FTI_Recover
to prevent segmentation faults.
EXAMPLE
see example of FTI_Status.
- Loads checkpoint data and initializes runtime variables upon recovery.
- Writes multilevel checkpoints regarding their requested frequencies.
DEFINITION
subroutine FTI_Snapshot ( err )
ARGUMENTS
Variable | What for? | |
---|---|---|
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
Value | Reason |
---|---|
FTI_SCES |
Successfull call (without checkpointing) or if recovery successful |
FTI_NSCS |
Failure of FTI_Checkpoint
|
FTI_DONE |
Success of FTI_Checkpoint
|
FTI_NREC |
Failure on recovery |
DESCRIPTION
This function loads the checkpoint data from the checkpoint file in case of
restart. Otherwise, it checks if the current iteration requires checkpointing
(see e.g.: ckpt_L1) and performs a checkpoint if needed (internal call to FTI_Checkpoint
). Should be called after
initialization of protected variables.
EXAMPLE
! ...
ptriter => iter
call FTI_Protect(0, ptriter, err)
call FTI_Protect(2, g, err)
call FTI_Protect(1, h, err)
do iter = 1, ITER_TIMES
call FTI_Snapshot(err)
call doWork(nbProcs, rank, g, h, localerror)
! ...
enddo
if ( rank == 0 ) then
print '("Execution finished in ",F9.0," seconds.")', MPI_Wtime() - wtime
endif
! ...
- Frees the allocated memory.
- Communicates the end of the execution to dedicated threads.
- Cleans checkpoints and metadata.
DEFINITION
subroutine FTI_Finalize ( err )
ARGUMENTS
Variable | What for? | |
---|---|---|
integer err |
OUT | Token for FTI error code. |
ERROR HANDLING
Value | Reason |
---|---|
FTI_SCES |
For application process |
exit(0) |
For FTI process (only if head == 1) |
DESCRIPTION
This function notifies the FTI processes that the execution is over, frees
some data structures and it closes. If this function is not called on the end
of the program the FTI processes will never finish (deadlock). Should be
called before MPI_Finalize()
.
EXAMPLE
! ...
deallocate(h)
deallocate(g)
call FTI_Finalize(err)
call MPI_Finalize(err)
! ...