forked from minar09/ACGPN
-
Notifications
You must be signed in to change notification settings - Fork 28
/
tps_grid_gen.py
83 lines (71 loc) · 3.44 KB
/
tps_grid_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# encoding: utf-8
import torch
import itertools
import torch.nn as nn
from torch.autograd import Function, Variable
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
N = input_points.size(0)
M = control_points.size(0)
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
# original implementation, very slow
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
pairwise_diff_square = pairwise_diff * pairwise_diff
pairwise_dist = pairwise_diff_square[:,
:, 0] + pairwise_diff_square[:, :, 1]
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
# fix numerical error for 0 * log(0), substitute all nan with 0
mask = repr_matrix != repr_matrix
repr_matrix.masked_fill_(mask, 0)
return repr_matrix
class TPSGridGen(nn.Module):
def __init__(self, target_height, target_width, target_control_points):
super(TPSGridGen, self).__init__()
assert target_control_points.ndimension() == 2
assert target_control_points.size(1) == 2
N = target_control_points.size(0)
self.num_points = N
target_control_points = target_control_points.float()
# create padded kernel matrix
forward_kernel = torch.zeros(N + 3, N + 3)
target_control_partial_repr = compute_partial_repr(
target_control_points, target_control_points)
forward_kernel[:N, :N].copy_(target_control_partial_repr)
forward_kernel[:N, -3].fill_(1)
forward_kernel[-3, :N].fill_(1)
forward_kernel[:N, -2:].copy_(target_control_points)
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
# compute inverse matrix
inverse_kernel = torch.inverse(forward_kernel)
# create target cordinate matrix
HW = target_height * target_width
target_coordinate = list(itertools.product(
range(target_height), range(target_width)))
# print(target_coordinate)
target_coordinate = torch.Tensor(target_coordinate) # HW x 2
Y, X = target_coordinate.split(1, dim=1)
Y = Y * 2 / (target_height - 1) - 1
X = X * 2 / (target_width - 1) - 1
# convert from (y, x) to (x, y)
target_coordinate = torch.cat([X, Y], dim=1)
target_coordinate_partial_repr = compute_partial_repr(
target_coordinate, target_control_points)
target_coordinate_repr = torch.cat([
target_coordinate_partial_repr, torch.ones(
HW, 1), target_coordinate
], dim=1)
# register precomputed matrices
self.register_buffer('inverse_kernel', inverse_kernel)
self.register_buffer('padding_matrix', torch.zeros(3, 2))
self.register_buffer('target_coordinate_repr', target_coordinate_repr)
def forward(self, source_control_points):
assert source_control_points.ndimension() == 3
assert source_control_points.size(1) == self.num_points
assert source_control_points.size(2) == 2
batch_size = source_control_points.size(0)
Y = torch.cat([source_control_points, Variable(
self.padding_matrix.expand(batch_size, 3, 2))], 1)
mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y)
source_coordinate = torch.matmul(
Variable(self.target_coordinate_repr), mapping_matrix)
return source_coordinate