-
Notifications
You must be signed in to change notification settings - Fork 50
/
ide.py
158 lines (125 loc) · 5.8 KB
/
ide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.preprocessing import normalize
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.models import resnet50
from torchvision.transforms import functional
from __init__ import DEVICE, cmc, mean_ap
from market1501 import Market1501
root = os.path.dirname(os.path.realpath(__file__)) + '/../Market-1501-v15.09.15'
class IDE(nn.Module):
def __init__(self, num_classes):
super(IDE, self).__init__()
resnet = resnet50(pretrained=True)
self.backbone = nn.Sequential(
resnet.conv1,
resnet.bn1,
resnet.relu,
resnet.maxpool,
resnet.layer1,
resnet.layer2,
resnet.layer3,
resnet.layer4,
nn.AdaptiveAvgPool2d((1, 1)),
)
self.classifier = nn.Sequential(
nn.Linear(2048, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.1),
nn.Dropout(p=0.5),
nn.Linear(512, num_classes)
)
nn.init.kaiming_normal_(self.classifier[0].weight, mode='fan_out')
nn.init.constant_(self.classifier[0].bias, 0.)
nn.init.normal_(self.classifier[1].weight, mean=1., std=0.02)
nn.init.constant_(self.classifier[1].bias, 0.)
nn.init.normal_(self.classifier[4].weight, std=0.001)
nn.init.constant_(self.classifier[4].bias, 0.)
def forward(self, x):
"""
:param x: input image of (N, C, H, W)
:return: (feature of N*2048, label predict of N*num_classes)
"""
x = self.backbone(x)
x = x.squeeze()
y = self.classifier(x)
return x, y
def run():
batch_size = 32
train_transform = transforms.Compose([
transforms.Resize(144, interpolation=3),
transforms.RandomCrop((256, 128)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize((288, 144), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_flip_transform = transforms.Compose([
transforms.Resize((288, 144), interpolation=3),
functional.hflip,
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = Market1501(root + '/bounding_box_train', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
query_dataset = Market1501(root + '/query', transform=test_transform)
query_flip_dataset = Market1501(root + '/query', transform=test_flip_transform)
query_loader = DataLoader(query_dataset, batch_size=batch_size, shuffle=False)
query_flip_loader = DataLoader(query_flip_dataset, batch_size=batch_size, shuffle=False)
test_dataset = Market1501(root + '/bounding_box_test', transform=test_transform)
test_flip_dataset = Market1501(root + '/bounding_box_test', transform=test_flip_transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
test_flip_loader = DataLoader(test_flip_dataset, batch_size=batch_size, shuffle=False)
ide = IDE(num_classes=len(train_dataset.unique_ids)).to(DEVICE)
criterion = nn.CrossEntropyLoss()
params = [
{'params': ide.backbone.parameters(), 'lr': 0.01},
{'params': ide.classifier.parameters(), 'lr': 0.1},
]
optimizer = optim.SGD(params, momentum=0.9, weight_decay=5e-4, nesterov=True)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
epochs = 50
for epoch in range(epochs):
ide.train()
scheduler.step()
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
optimizer.zero_grad()
outputs = ide(inputs)
loss = criterion(outputs[1], labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('%d/%d - %d/%d - loss: %f' % (epoch, epochs, i, len(train_loader), loss.item()))
print('epoch: %d/%d - loss: %f' % (epoch, epochs, running_loss / len(train_loader)))
if epoch % 10 == 9:
ide.eval()
query = np.concatenate([ide(inputs.to(DEVICE))[0].detach().cpu().numpy()
for inputs, _ in query_loader])
query_flip = np.concatenate([ide(inputs.to(DEVICE))[0].detach().cpu().numpy()
for inputs, _ in query_flip_loader])
test = np.concatenate([ide(inputs.to(DEVICE))[0].detach().cpu().numpy()
for inputs, _ in test_loader])
test_flip = np.concatenate([ide(inputs.to(DEVICE))[0].detach().cpu().numpy()
for inputs, _ in test_flip_loader])
# dist = cdist((query + query_flip) / 2., (test + test_flip) / 2.)
dist = cdist(normalize(query + query_flip), normalize(test + test_flip))
r = cmc(dist, query_dataset.ids, test_dataset.ids, query_dataset.cameras, test_dataset.cameras,
separate_camera_set=False,
single_gallery_shot=False,
first_match_break=True)
m_ap = mean_ap(dist, query_dataset.ids, test_dataset.ids, query_dataset.cameras, test_dataset.cameras)
print('epoch[%d]: mAP=%f, r@1=%f, r@3=%f, r@5=%f, r@10=%f' % (epoch + 1, m_ap, r[0], r[2], r[4], r[9]))
if __name__ == '__main__':
run()