forked from ARM-software/ML-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
definition.yaml
43 lines (43 loc) · 1.24 KB
/
definition.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
benchmark:
DCASE 2020 Task 2 Slide rail:
AUC: 0.968
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Large model developed by Arm, from the MicroNets paper. It is trained on the 'slide
rail' task from http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds.
license:
- Apache-2.0
network:
file_size_bytes: 442000
filename: ad_large_int8.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
value: 0b7e7776c79fac28c186b2ba00314a05b7faadbf
provenance: https://arxiv.org/pdf/2010.11267.pdf
network_parameters:
input_nodes:
- description: Input is 64 steps of a Log Mel Spectrogram using 64 mels resized
to 32x32.
example_input:
path: models/anomaly_detection/micronet_large/tflite_int8/testing_input/input
name: input
shape:
- 1
- 32
- 32
- 1
output_nodes:
- description: Raw logits corresponding to different machine IDs being anomalous
name: Identity
shape:
- 1
- 8
test_output_path: models/anomaly_detection/micronet_large/tflite_int8/testing_output/Identity
operators:
TensorFlow Lite:
- AVERAGE_POOL_2D
- CONV_2D
- DEPTHWISE_CONV_2D
- RELU6
- RESHAPE
paper: https://arxiv.org/pdf/2010.11267.pdf