forked from ARM-software/ML-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
definition.yaml
60 lines (60 loc) · 1.9 KB
/
definition.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
author_notes: null
benchmark:
benchmark_description: please note that fluent-speech-corpus dataset hosted on Kaggle
is a licensed dataset.
benchmark_link: https://www.kaggle.com/tommyngx/fluent-speech-corpus
benchmark_metrics:
LER: '0.0348'
WER: '0.1123'
benchmark_name: Fluent speech
description: "Tiny Wav2letter is a tiny version of the original Wav2Letter model.\
\ It is a convolutional speech recognition neural network. This implementation was\
\ created by Arm, pruned to 50% sparsity, fine-tuned and quantized using the TensorFlow\
\ Model Optimization Toolkit.\r\n\r\n"
license:
- Apache-2.0
network:
datatype: int8
file_size_bytes: 3997112
filename: tiny_wav2letter_int8.tflite
framework: TensorFlow Lite
framework_version: 2.4.1
hash:
algorithm: sha1
value: 13ca2294ba4bbb1f1c6c5e663cb532d58cd76a6b
provenance: https://github.com/ARM-software/ML-zoo/tree/master/models/speech_recognition/wav2letter
training: LibriSpeech,Mini LibrySpeech,fluent speech
network_parameters:
input_nodes:
- description: Speech converted to MFCCs and quantized to INT8
example_input:
path: models/speech_recognition/tiny_wav2letter/tflite_int8/testing_input/input_1_int8
input_datatype: int8
name: input_1_int8
shape:
- 1
- 296
- 39
output_nodes:
- description: A tensor of time and class probabilities, that represents the probability
of each class at each timestep. Should be passed to a decoder. For example ctc_beam_search_decoder.
example_output:
path: models/speech_recognition/tiny_wav2letter/tflite_int8/testing_output/Identity_int8
name: Identity_int8
output_datatype: int8
shape:
- 1
- 1
- 148
- 29
network_quality:
quality_level: Deployable
quality_level_hero_hw: null
operators:
TensorFlow Lite:
- CONV_2D
- DEQUANTIZE
- LEAKY_RELU
- QUANTIZE
- RESHAPE
paper: https://arxiv.org/abs/1609.03193