diff --git a/README.md b/README.md
index e56011c..ce3f069 100644
--- a/README.md
+++ b/README.md
@@ -1,7 +1,8 @@
-# Model Zoo
+# Model Zoo
![version](https://img.shields.io/badge/version-21.05-0091BD)
> A collection of machine learning models optimized for Arm IP.
+
## Anomaly Detection
@@ -9,40 +10,46 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (AUC) |
- MicroNet Large INT8 |
+ MicroNet Large INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.968 |
- MicroNet Medium INT8 |
+ MicroNet Medium INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.963 |
- MicroNet Small INT8 |
+ MicroNet Small INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.955 |
+**Dataset**: Dcase 2020 Task 2 Slide Rail
+
## Image Classification
@@ -50,10 +57,11 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (Top 1 Accuracy) |
MobileNet v2 1.0 224 INT8 * |
@@ -63,18 +71,22 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.697 |
MobileNet v2 1.0 224 UINT8 |
UINT8 |
TensorFlow Lite |
- :heavy_check_mark: |
+ :heavy_multiplication_x: |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.708 |
+**Dataset**: ILSVRC 2012
+
## Keyword Spotting
@@ -82,91 +94,101 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (Accuracy) |
- DS-CNN Clustered INT8 * |
+ CNN Large INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.929 |
- DS-CNN Clustered FP32 * |
- FP32 |
+ CNN Medium INT8 * |
+ INT8 |
TensorFlow Lite |
:heavy_check_mark: |
- :heavy_multiplication_x: |
:heavy_check_mark: |
- :heavy_multiplication_x: |
+ :heavy_check_mark: |
+ :heavy_check_mark: |
+ 0.913 |
- CNN Large INT8 * |
+ CNN Small INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.914 |
- CNN Medium INT8 * |
+ DNN Large INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.863 |
- CNN Small INT8 * |
+ DNN Medium INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.846 |
- DNN Large INT8 * |
+ DNN Small INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.827 |
- DNN Medium INT8 * |
- INT8 |
+ DS-CNN Clustered FP32 * |
+ FP32 |
TensorFlow Lite |
:heavy_check_mark: |
+ :heavy_multiplication_x: |
:heavy_check_mark: |
- :heavy_check_mark: |
- :heavy_check_mark: |
+ :heavy_multiplication_x: |
+ 0.950 |
- DNN Small INT8 * |
+ DS-CNN Clustered INT8 * |
INT8 |
TensorFlow Lite |
+ :heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- :heavy_check_mark: |
+ 0.940 |
DS-CNN Large INT8 * |
INT8 |
TensorFlow Lite |
+ :heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- :heavy_check_mark: |
+ 0.946 |
DS-CNN Medium INT8 * |
@@ -176,6 +198,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.934 |
DS-CNN Small INT8 * |
@@ -185,36 +208,42 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.934 |
- MicroNet Large INT8 |
+ MicroNet Large INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.965 |
- MicroNet Medium INT8 |
+ MicroNet Medium INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.958 |
- MicroNet Small INT8 |
+ MicroNet Small INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
+ 0.953 |
+**Dataset**: Google Speech Commands Test Set
+
## Object Detection
@@ -222,37 +251,41 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (mAP) |
- SSD MobileNet v1 INT8 * |
- INT8 |
+ SSD MobileNet v1 FP32 * |
+ FP32 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
+ 0.210 |
- SSD MobileNet v1 FP32 * |
- FP32 |
+ SSD MobileNet v1 INT8 * |
+ UINT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
+ 0.234 |
SSD MobileNet v1 UINT8 * |
UINT8 |
TensorFlow Lite |
- :heavy_check_mark: |
+ :heavy_multiplication_x: |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
+ 0.180 |
YOLO v3 Tiny FP32 * |
@@ -262,9 +295,12 @@
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
+ 0.331 |
+**Dataset**: COCO Validation 2017
+
## Speech Recognition
@@ -272,31 +308,35 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (LER) |
- Wav2letter Pruned INT8 * |
+ Wav2letter INT8 |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.0877 |
- Wav2letter INT8 |
+ Wav2letter Pruned INT8 * |
INT8 |
TensorFlow Lite |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
+ 0.0783 |
+**Dataset**: LibriSpeech
## Visual Wake Words
@@ -305,45 +345,51 @@
Network |
Type |
Framework |
- Cortex-A |
- Cortex-M |
- Mali GPU |
- Ethos U |
+ Cortex-A |
+ Cortex-M |
+ Mali GPU |
+ Ethos U |
+ Score (Accuracy) |
- MicroNet VWW-4 INT8 |
+ MicroNet VWW-2 INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_multiplication_x: |
+ 0.768 |
- MicroNet VWW-3 INT8 |
+ MicroNet VWW-3 INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_multiplication_x: |
+ 0.855 |
- MicroNet VWW-2 INT8 |
+ MicroNet VWW-4 INT8 |
INT8 |
TensorFlow Lite |
:heavy_multiplication_x: |
:heavy_check_mark: |
:heavy_multiplication_x: |
:heavy_multiplication_x: |
+ 0.822 |
+**Dataset**: Visual Wake Words
+
+
### Key
* :heavy_check_mark: - Will run on this platform.
* :heavy_multiplication_x: - Will not run on this platform.
* `*` - Code to recreate model available.
-
## License
-[Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) unless otherwise explicitly stated.
\ No newline at end of file
+[Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) unless otherwise explicitly stated.
diff --git a/models/anomaly_detection/micronet_medium/tflite_int8/README.md b/models/anomaly_detection/micronet_medium/tflite_int8/README.md
index 00bb3bf..5cb9f64 100644
--- a/models/anomaly_detection/micronet_medium/tflite_int8/README.md
+++ b/models/anomaly_detection/micronet_medium/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Dcase 2020 Task 2 Slide Rail
| Metric | Value |
|--------|-------|
-| AUC | 0.9632 |
+| AUC | 0.963 |
## Optimizations
| Optimization | Value |
diff --git a/models/anomaly_detection/micronet_medium/tflite_int8/definition.yaml b/models/anomaly_detection/micronet_medium/tflite_int8/definition.yaml
index 019d583..3c1c81e 100644
--- a/models/anomaly_detection/micronet_medium/tflite_int8/definition.yaml
+++ b/models/anomaly_detection/micronet_medium/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
DCASE 2020 Task 2 Slide rail:
- AUC: 0.9632
+ AUC: 0.963
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Medium model developed by Arm, from the MicroNets paper. It is trained on the 'slide
rail' task from http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds.
diff --git a/models/anomaly_detection/micronet_small/tflite_int8/README.md b/models/anomaly_detection/micronet_small/tflite_int8/README.md
index 8e8386c..7bc91ab 100644
--- a/models/anomaly_detection/micronet_small/tflite_int8/README.md
+++ b/models/anomaly_detection/micronet_small/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Dcase 2020 Task 2 Slide Rail
| Metric | Value |
|--------|-------|
-| AUC | 0.9548 |
+| AUC | 0.955 |
## Optimizations
| Optimization | Value |
diff --git a/models/anomaly_detection/micronet_small/tflite_int8/definition.yaml b/models/anomaly_detection/micronet_small/tflite_int8/definition.yaml
index d64ea2b..efe4aed 100644
--- a/models/anomaly_detection/micronet_small/tflite_int8/definition.yaml
+++ b/models/anomaly_detection/micronet_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
DCASE 2020 Task 2 Slide rail:
- AUC: 0.9548
+ AUC: 0.955
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Small model developed by Arm, from the MicroNets paper. It is trained on the 'slide
rail' task from http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds.
diff --git a/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/README.md b/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/README.md
index 6b55b01..e94eee7 100644
--- a/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/README.md
+++ b/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/README.md
@@ -39,7 +39,7 @@ Dataset: ILSVRC 2012
| Metric | Value |
|--------|-------|
-| Top 1 Accuracy | 69.68 |
+| Top 1 Accuracy | 0.697 |
## Optimizations
| Optimization | Value |
diff --git a/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/definition.yaml b/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/definition.yaml
index 960b028..ad32dd3 100644
--- a/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/definition.yaml
+++ b/models/image_classification/mobilenet_v2_1.0_224/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
ILSVRC 2012:
- top-1-accuracy: '69.68'
+ top-1-accuracy: 0.697
description: "INT8 quantised version of MobileNet v2 model. Trained on ImageNet."
license:
- Apache-2.0
diff --git a/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8/README.md b/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8/README.md
index 01d6c8a..380b34f 100644
--- a/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8/README.md
+++ b/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8/README.md
@@ -25,7 +25,7 @@ A guide on how to deploy this model using the Arm NN SDK can be found [here](htt
## Performance
| Platform | Optimized |
|----------|:---------:|
-| Cortex-A |:heavy_check_mark: |
+| Cortex-A |:heavy_multiplication_x: |
| Cortex-M |:heavy_multiplication_x: |
| Mali GPU |:heavy_check_mark: |
| Ethos U |:heavy_check_mark: |
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/README.md b/models/keyword_spotting/cnn_large/tflite_int8/README.md
index 43b7cfd..d36c58c 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_large/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 92.92% |
+| Accuracy | 0.929 |
## Performance
| Platform | Optimized |
@@ -42,7 +42,6 @@ Dataset: Google Speech Commands Test Set
* :heavy_multiplication_x: - Will not run on this platform.
-
## Optimizations
| Optimization | Value |
|-----------------|---------|
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
index fe584ba..fad5eb3 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 92.92%
+ Accuracy: 0.929
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Large
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/README.md b/models/keyword_spotting/cnn_medium/tflite_int8/README.md
index ba76824..0ccdf5c 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 91.33% |
+| Accuracy | 0.913 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
index 4cd5aea..f5a4b0b 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 91.33%
+ Accuracy: 0.913
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Medium
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/README.md b/models/keyword_spotting/cnn_small/tflite_int8/README.md
index 55299b0..1a8098b 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_small/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 91.41% |
+| Accuracy | 0.914 |
## Performance
| Platform | Optimized |
@@ -41,8 +41,6 @@ Dataset: Google Speech Commands Test Set
* :heavy_check_mark: - Will run on this platform.
* :heavy_multiplication_x: - Will not run on this platform.
-
-
## Optimizations
| Optimization | Value |
|-----------------|---------|
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
index b6f10d3..bf73a6a 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 91.41%
+ Accuracy: 0.914
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Small
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/README.md b/models/keyword_spotting/dnn_large/tflite_int8/README.md
index a47c182..a65b295 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_large/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 86.28% |
+| Accuracy | 0.863 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
index 3549ad3..7731163 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 86.28%
+ Accuracy: 0.863
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Large
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/README.md b/models/keyword_spotting/dnn_medium/tflite_int8/README.md
index 05970e7..fcb6e2f 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 84.64% |
+| Accuracy | 0.846 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
index cc80108..b963bc7 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 84.64%
+ Accuracy: 0.846
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Medium
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/README.md b/models/keyword_spotting/dnn_small/tflite_int8/README.md
index 54ac9db..6ff5897 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_small/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 82.70% |
+| Accuracy | 0.827 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
index b471b25..891a321 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 82.70%
+ Accuracy: 0.827
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Small
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/README.md b/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/README.md
index 91d6530..0643dd8 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/README.md
+++ b/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/README.md
@@ -39,7 +39,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Top 1 Accuracy | 0.9495 |
+| Top 1 Accuracy | 0.950 |
## Optimizations
| Optimization | Value |
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/definition.yaml b/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/definition.yaml
index 5b23bf1..f9c2303 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_large/tflite_clustered_fp32/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
SpeechCommands:
- top_1_accuracy: 0.9495
+ top_1_accuracy: 0.950
description: 'This is a clustered (32 clusters, kmeans++ centroid initialization)
and retrained (fine-tuned) FP32 version of the DS-CNN Large model developed by Arm
from the Hello Edge paper. Code for the original DS-CNN implementation can be found
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/README.md b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/README.md
index 55e1a1b..3e859ed 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/README.md
+++ b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/README.md
@@ -25,7 +25,7 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
## Performance
| Platform | Optimized |
|----------|:---------:|
-| Cortex-A |:heavy_check_mark: |
+| Cortex-A |:heavy_multiplication_x: |
| Cortex-M |:heavy_check_mark: |
| Mali GPU |:heavy_check_mark: |
| Ethos U |:heavy_check_mark: |
@@ -39,7 +39,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Top 1 Accuracy | 0.9401 |
+| Top 1 Accuracy | 0.940 |
## Optimizations
| Optimization | Value |
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/definition.yaml b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/definition.yaml
index 0003d0d..3d65144 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_large/tflite_clustered_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
SpeechCommands:
- top_1_accuracy: 0.9401
+ top_1_accuracy: 0.940
description: 'This is a clustered (32 clusters, kmeans++ centroid initialization),
retrained (fine-tuned) and fully quantized version (INT8) of the DS-CNN Large model
developed by Arm from the Hello Edge paper. Code for the original DS-CNN implementation
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_int8/README.md b/models/keyword_spotting/ds_cnn_large/tflite_int8/README.md
index 472e8ec..b95cf79 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_int8/README.md
+++ b/models/keyword_spotting/ds_cnn_large/tflite_int8/README.md
@@ -27,12 +27,12 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 94.58% |
+| Accuracy | 0.946 |
## Performance
| Platform | Optimized |
|----------|:---------:|
-| Cortex-A |:heavy_check_mark: |
+| Cortex-A |:heavy_multiplication_x: |
| Cortex-M |:heavy_check_mark: |
| Mali GPU |:heavy_check_mark: |
| Ethos U |:heavy_check_mark: |
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
index 7588209..b918700 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 94.58%
+ Accuracy: 0.946
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Large model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md b/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
index 4566e4a..07d6bcf 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 93.35% |
+| Accuracy | 0.934 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
index 1caff16..461756b 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 93.35%
+ Accuracy: 0.934
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Medium model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/ds_cnn_small/tflite_int8/README.md b/models/keyword_spotting/ds_cnn_small/tflite_int8/README.md
index 097875e..dc2ffec 100644
--- a/models/keyword_spotting/ds_cnn_small/tflite_int8/README.md
+++ b/models/keyword_spotting/ds_cnn_small/tflite_int8/README.md
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 93.35% |
+| Accuracy | 0.934 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
index 3a529e7..7135f43 100644
--- a/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 93.35%
+ Accuracy: 0.934
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Small model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
diff --git a/models/keyword_spotting/micronet_large/tflite_int8/README.md b/models/keyword_spotting/micronet_large/tflite_int8/README.md
index 4cacf2f..2e3dc16 100644
--- a/models/keyword_spotting/micronet_large/tflite_int8/README.md
+++ b/models/keyword_spotting/micronet_large/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 96.48% |
+| Accuracy | 0.965 |
## Optimizations
| Optimization | Value |
diff --git a/models/keyword_spotting/micronet_large/tflite_int8/definition.yaml b/models/keyword_spotting/micronet_large/tflite_int8/definition.yaml
index d7ff34a..af8e136 100644
--- a/models/keyword_spotting/micronet_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/micronet_large/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 96.48%
+ Accuracy: 0.965
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Large model developed by Arm, from the MicroNets paper. This model is trained on
the 'Google Speech Commands' dataset.
diff --git a/models/keyword_spotting/micronet_medium/tflite_int8/README.md b/models/keyword_spotting/micronet_medium/tflite_int8/README.md
index 8cfa7f2..9c7db99 100644
--- a/models/keyword_spotting/micronet_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/micronet_medium/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 95.77% |
+| Accuracy | 0.958 |
## Optimizations
| Optimization | Value |
diff --git a/models/keyword_spotting/micronet_medium/tflite_int8/definition.yaml b/models/keyword_spotting/micronet_medium/tflite_int8/definition.yaml
index 60e49d5..d4f876a 100644
--- a/models/keyword_spotting/micronet_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/micronet_medium/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 95.77%
+ Accuracy: 0.958
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Medium model developed by Arm, from the MicroNets paper. This model is trained on
the 'Google Speech Commands' dataset.
diff --git a/models/keyword_spotting/micronet_small/tflite_int8/README.md b/models/keyword_spotting/micronet_small/tflite_int8/README.md
index aaa3b26..35ff26e 100644
--- a/models/keyword_spotting/micronet_small/tflite_int8/README.md
+++ b/models/keyword_spotting/micronet_small/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 95.32% |
+| Accuracy | 0.953 |
## Optimizations
| Optimization | Value |
diff --git a/models/keyword_spotting/micronet_small/tflite_int8/definition.yaml b/models/keyword_spotting/micronet_small/tflite_int8/definition.yaml
index 4217caa..344bfc4 100644
--- a/models/keyword_spotting/micronet_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/micronet_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 95.32%
+ Accuracy: 0.953
description: This is a fully quantized version (asymmetrical int8) of the MicroNet
Small model developed by Arm, from the MicroNets paper. This model is trained on
the 'Google Speech Commands' dataset.
diff --git a/models/object_detection/ssd_mobilenet_v1/tflite_fp32/README.md b/models/object_detection/ssd_mobilenet_v1/tflite_fp32/README.md
index 656b25c..34aefb9 100644
--- a/models/object_detection/ssd_mobilenet_v1/tflite_fp32/README.md
+++ b/models/object_detection/ssd_mobilenet_v1/tflite_fp32/README.md
@@ -30,7 +30,7 @@ Dataset: Coco Validation 2017
| Metric | Value |
|--------|-------|
-| mAP | 0.21 |
+| mAP | 0.210 |
## Performance
| Platform | Optimized |
diff --git a/models/object_detection/ssd_mobilenet_v1/tflite_fp32/definition.yaml b/models/object_detection/ssd_mobilenet_v1/tflite_fp32/definition.yaml
index a2ef199..87ed1e3 100644
--- a/models/object_detection/ssd_mobilenet_v1/tflite_fp32/definition.yaml
+++ b/models/object_detection/ssd_mobilenet_v1/tflite_fp32/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
coco_validation_2017:
- mAP: 0.21
+ mAP: 0.210
description: SSD MobileNet v1 is a object detection network, that localizes and identifies
objects in an input image. This is a TF Lite floating point version that takes a
300x300 input image and outputs detections for this image. This model is trained
diff --git a/models/object_detection/ssd_mobilenet_v1/tflite_int8/definition.yaml b/models/object_detection/ssd_mobilenet_v1/tflite_int8/definition.yaml
index af99a1f..07a6a88 100644
--- a/models/object_detection/ssd_mobilenet_v1/tflite_int8/definition.yaml
+++ b/models/object_detection/ssd_mobilenet_v1/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
COCO 2017 Validation:
- mAP: '0.234'
+ mAP: 0.234
description: SSD MobileNet v1 is a object detection network, that localizes and identifies
objects in an input image. This is a TF Lite quantized version that takes a 300x300
input image and outputs detections for this image. This model is converted from
diff --git a/models/object_detection/ssd_mobilenet_v1/tflite_uint8/README.md b/models/object_detection/ssd_mobilenet_v1/tflite_uint8/README.md
index d74c212..66431d8 100644
--- a/models/object_detection/ssd_mobilenet_v1/tflite_uint8/README.md
+++ b/models/object_detection/ssd_mobilenet_v1/tflite_uint8/README.md
@@ -27,12 +27,12 @@ Dataset: Coco Validation 2017
| Metric | Value |
|--------|-------|
-| mAP | 0.18 |
+| mAP | 0.180 |
## Performance
| Platform | Optimized |
|----------|:---------:|
-| Cortex-A |:heavy_check_mark: |
+| Cortex-A |:heavy_multiplication_x: |
| Cortex-M |:heavy_multiplication_x: |
| Mali GPU |:heavy_check_mark: |
| Ethos U |:heavy_multiplication_x: |
diff --git a/models/object_detection/ssd_mobilenet_v1/tflite_uint8/definition.yaml b/models/object_detection/ssd_mobilenet_v1/tflite_uint8/definition.yaml
index f2818fe..6fb133f 100644
--- a/models/object_detection/ssd_mobilenet_v1/tflite_uint8/definition.yaml
+++ b/models/object_detection/ssd_mobilenet_v1/tflite_uint8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
coco_validation_2017:
- mAP: 0.18
+ mAP: 0.180
description: SSD MobileNet v1 is a object detection network, that localizes and identifies
objects in an input image. This is a TF Lite quantized version that takes a 300x300
input image and outputs detections for this image. This model is trained and quantized
diff --git a/models/speech_recognition/wav2letter/tflite_int8/README.md b/models/speech_recognition/wav2letter/tflite_int8/README.md
index 31d4290..4916c88 100644
--- a/models/speech_recognition/wav2letter/tflite_int8/README.md
+++ b/models/speech_recognition/wav2letter/tflite_int8/README.md
@@ -24,7 +24,7 @@ Dataset: Librispeech
| Metric | Value |
|--------|-------|
-| Ler | 0.08771 |
+| Ler | 0.0877 |
## Performance
| Platform | Optimized |
diff --git a/models/speech_recognition/wav2letter/tflite_int8/definition.yaml b/models/speech_recognition/wav2letter/tflite_int8/definition.yaml
index 01e49a4..9787caf 100644
--- a/models/speech_recognition/wav2letter/tflite_int8/definition.yaml
+++ b/models/speech_recognition/wav2letter/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
LibriSpeech:
- LER: 0.08771
+ LER: 0.0877
description: Wav2letter is a convolutional speech recognition neural network. This
implementation was created by Arm and quantized to the INT8 datatype.
license:
diff --git a/models/speech_recognition/wav2letter/tflite_pruned_int8/README.md b/models/speech_recognition/wav2letter/tflite_pruned_int8/README.md
index 0cd3255..6c524c4 100644
--- a/models/speech_recognition/wav2letter/tflite_pruned_int8/README.md
+++ b/models/speech_recognition/wav2letter/tflite_pruned_int8/README.md
@@ -39,7 +39,7 @@ Dataset: LibriSpeech
| Metric | Value |
|--------|-------|
-| LER | 0.07831 |
+| LER | 0.0783 |
## Optimizations
| Optimization | Value |
diff --git a/models/speech_recognition/wav2letter/tflite_pruned_int8/definition.yaml b/models/speech_recognition/wav2letter/tflite_pruned_int8/definition.yaml
index a2f0ce0..8b417a2 100644
--- a/models/speech_recognition/wav2letter/tflite_pruned_int8/definition.yaml
+++ b/models/speech_recognition/wav2letter/tflite_pruned_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
LibriSpeech:
- LER: 0.07831443101167679
+ LER: 0.0783
description: Wav2letter is a convolutional speech recognition neural network. This
implementation was created by Arm, pruned to 50% sparisty, fine-tuned and quantized
using the TensorFlow Model Optimization Toolkit.
diff --git a/models/visual_wake_words/micronet_vww2/tflite_int8/README.md b/models/visual_wake_words/micronet_vww2/tflite_int8/README.md
index 03dc1e4..d6c3694 100644
--- a/models/visual_wake_words/micronet_vww2/tflite_int8/README.md
+++ b/models/visual_wake_words/micronet_vww2/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Visual Wake Words
| Metric | Value |
|--------|-------|
-| Accuracy | 76.8 |
+| Accuracy | 0.768 |
## Optimizations
| Optimization | Value |
diff --git a/models/visual_wake_words/micronet_vww2/tflite_int8/definition.yaml b/models/visual_wake_words/micronet_vww2/tflite_int8/definition.yaml
index 4b2a1d1..29f1b47 100644
--- a/models/visual_wake_words/micronet_vww2/tflite_int8/definition.yaml
+++ b/models/visual_wake_words/micronet_vww2/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Visual Wake Words:
- accuracy: 76.8
+ accuracy: 0.768
description: 'This is a fully quantized version (asymmetrical int8) of the MicroNet
VWW-2 model developed by Arm, from the MicroNets paper. It is trained on the ''Visual
Wake Words'' dataset, more information can be found here: https://arxiv.org/pdf/1906.05721.pdf.'
diff --git a/models/visual_wake_words/micronet_vww3/tflite_int8/README.md b/models/visual_wake_words/micronet_vww3/tflite_int8/README.md
index 9cebb50..b31788c 100644
--- a/models/visual_wake_words/micronet_vww3/tflite_int8/README.md
+++ b/models/visual_wake_words/micronet_vww3/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Visual Wake Words
| Metric | Value |
|--------|-------|
-| Accuracy | 85.53723 |
+| Accuracy | 0.855 |
## Optimizations
| Optimization | Value |
diff --git a/models/visual_wake_words/micronet_vww3/tflite_int8/definition.yaml b/models/visual_wake_words/micronet_vww3/tflite_int8/definition.yaml
index 1527e3a..a3ca36f 100644
--- a/models/visual_wake_words/micronet_vww3/tflite_int8/definition.yaml
+++ b/models/visual_wake_words/micronet_vww3/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Visual Wake Words:
- Accuracy: 85.53723
+ Accuracy: 0.855
description: 'This is a fully quantized version (asymmetrical int8) of the MicroNet
VWW-3 model developed by Arm, from the MicroNets paper. It is trained on the ''Visual
Wake Words'' dataset, more information can be found here: https://arxiv.org/pdf/1906.05721.pdf.'
diff --git a/models/visual_wake_words/micronet_vww4/tflite_int8/README.md b/models/visual_wake_words/micronet_vww4/tflite_int8/README.md
index 5de027f..ce18021 100644
--- a/models/visual_wake_words/micronet_vww4/tflite_int8/README.md
+++ b/models/visual_wake_words/micronet_vww4/tflite_int8/README.md
@@ -36,7 +36,7 @@ Dataset: Visual Wake Words
| Metric | Value |
|--------|-------|
-| Accuracy | 82.19682 |
+| Accuracy | 0.822|
## Optimizations
| Optimization | Value |
diff --git a/models/visual_wake_words/micronet_vww4/tflite_int8/definition.yaml b/models/visual_wake_words/micronet_vww4/tflite_int8/definition.yaml
index 7308d59..c4b560b 100644
--- a/models/visual_wake_words/micronet_vww4/tflite_int8/definition.yaml
+++ b/models/visual_wake_words/micronet_vww4/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Visual Wake Words:
- Accuracy: '82.19682'
+ Accuracy: 0.822
description: 'This is a fully quantized version (asymmetrical int8) of the MicroNet
VWW-4 model developed by Arm, from the MicroNets paper. It is trained on the ''Visual
Wake Words'' dataset, more information can be found here: https://arxiv.org/pdf/1906.05721.pdf.'