-
Notifications
You must be signed in to change notification settings - Fork 5
/
EnvField.f
423 lines (296 loc) · 11.8 KB
/
EnvField.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
module Dielectric_Potential
use type_m
use constants_m
use blas95
use f95_precision
use parameters_m , only : PBC , EnvField_ , Environ_type , verbose
use MD_read_m , only : atom
use DP_potential_m , only : Dipole_Potentials
public :: Environment_SetUp , Q_phi
private
! module variables ...
type(molecular) , allocatable :: MolPBC(:)
! module parameters ...
real*8 , parameter :: units = 14.39965173d0 ! <== e^2/Angs = 14.399 eV
real*8 , parameter :: refractive_index = 1.33d0 ! <== refractive index of the dielectric medium ...
contains
!
!
!
!===================================
subroutine Environment_SetUp( sys )
!===================================
implicit none
type(structure) , intent(in) :: sys
If( EnvField_ .and. (.not. any(sys%fragment=="S")) ) stop 'execution halted: did not define solvent fragment'
select case (Environ_Type)
case( 'DP_QM' , 'DP_MM') ! <== leave to modulo DP_potential_m
CALL Dipole_Potentials( sys )
case( 'Ch_MM' ) ! <== stay in the modulo
CALL Classical_Point_Charges( sys )
case default
stop 'execution halted: check your option for Environ_Type in parameters.f'
end select
end subroutine Environment_SetUp
!
!
!
!=========================================
subroutine Classical_Point_Charges( sys )
!=========================================
implicit none
type(structure) , intent(in) :: sys
! local variables ...
integer :: i, j, I1, I2, nr, na, last_nr, first_nr, N_of_Q, N_of_Mols
real*8 :: total_valence
real*8 , allocatable :: Qi_Ri(:,:)
type(molecular) , allocatable :: Env_Mols(:)
! find positions of environment molecules ...
! pdb entries must be in a single block ...
first_nr = minval( sys%nr , sys%fragment == "S" )
last_nr = maxval( sys%nr , sys%fragment == "S" )
! total number of molecules comprising the dielectric domain ...
N_of_Mols = last_nr - first_nr + 1
CALL Allocation( sys, Env_Mols , N_of_Mols )
! total number of point-charges in dielectric domain ...
N_of_Q = sum( Env_Mols(:)% N_of_Atoms )
! consistency checks ...
If( N_of_Q /= count( sys%nr >= first_nr .and. sys%nr <= last_nr ) ) stop '>>> something wrong in Environment_SetUp <<<'
If( verbose ) Print 157 , N_of_Mols
!======================================================
! Setting Up Env_Atoms and Env_Mols ...
!
allocate( Qi_Ri(sys%atoms ,3) , source=D_zero )
Env_Mols(:)% nr = [( i , i=first_nr,last_nr )]
do i = 1 , N_of_Mols
nr = Env_Mols(i)% nr
na = Env_Mols(i)% N_of_Atoms
! position of nr residue in variable sys[1:atoms] ...
I1 = minloc( sys%nr , 1 , sys%nr == nr )
I2 = (I1-1) + na
!-----------------------------------------------------------------------------------------------
! Point Charges of environment molecules ...
Env_Mols(i)% PC% Q (1:na) = atom(I1:I2)% MM_charge
forall(j=1:3) Env_Mols(i)% PC% xyz(1:na,j) = sys% coord(I1:I2,j)
Env_Mols(i)% PC% nr (1:na) = nr
!-----------------------------------------------------------------------------------------------
! calculate Center_of_Charge for each environment molecule: sum_i = (q_i * vec{r}_i) / sum_i q_i ...
forall( j=1:3 , i=I1:I2 ) Qi_Ri(i,j) = sys%Nvalen(i) * sys%coord(i,j)
total_valence = sum( sys%Nvalen(I1:I2) )
forall(j=1:3) Env_Mols(i)% CC(j) = sum( Qi_Ri(I1:I2,j) ) / total_valence
!-----------------------------------------------------------------------------------------------
end do
deallocate( Qi_Ri)
!======================================================
! generate periodic structure of dielectric domain ; if PBCx=PBCy=PBCz=0 ==> Q_atoms_pbc = Q_atoms ...
CALL give_me_PBC( sys, Env_Mols, MolPBC )
!do i = 1 , size(MolPBC)
! do j = 1 , molpbc(i)% N_of_Atoms
! if( MOLpbc(i) %pc% Q(j) <0. ) then
! write(33,'(A4,3F9.4)') "O" , molpbc(i)%pc%xyz(j,1) , molpbc(i)%pc%xyz(j,2) , molpbc(i)%pc%xyz(j,3)
! else
! write(33,'(A4,3F9.4)') "H" , molpbc(i)%pc%xyz(j,1) , molpbc(i)%pc%xyz(j,2) , molpbc(i)%pc%xyz(j,3)
! end if
! end do
!end do
!
!do i = 1 , size(MolPBC)
! write(34,'(A4,3F9.4)') "I" , MolPBC(i)%CC(1) , MolPBC(i)%CC(2) , MolPBC(i)%CC(3)
!end do
include 'formats.h'
end subroutine Classical_Point_Charges
!
!
!
!=============================
function Q_phi( sys , a , b )
!=============================
implicit none
type(structure) , intent(in) :: sys
integer , intent(in) :: a , b
! local variables ...
integer :: i , j , k , na , N_of_Q , N_of_M
real*8 :: hardcore , cut_off_radius, CC_distance, midpoint_ab(3) , Q_phi(4)
real*8 , allocatable :: distance(:), V_phi(:), V_phi2(:,:), Q(:), versor(:,:), vector_ALL(:,:) , AT_Q(:), AT_versor(:,:) , AT_distance(:)
logical :: inside
! combination rule for solvation hardcore shell ...
hardcore = ( sys%solvation_hardcore(a) + sys%solvation_hardcore(b) ) / TWO
! midpoint between atoms a & b ...
midpoint_ab(:) = ( sys% coord(a,:) + sys% coord(b,:) ) / TWO
! total number of point charges in PBC ...
N_of_Q = sum( MolPBC(:)% N_of_Atoms )
!------------------------------------------------------------------------
! choice of solvent droplet .vs. PBC box ...
!------------------------------------------------------------------------
N_of_M = size(MolPBC)
allocate( vector_ALL ( N_of_M , 3 ) , source = D_zero )
allocate( AT_versor ( N_of_Q , 3 ) , source = D_zero )
allocate( AT_distance( N_of_Q ) , source = D_zero )
allocate( AT_Q ( N_of_Q ) , source = D_zero )
If( sum(PBC) == 0) then
do j = 1 , 3
vector_ALL(:,j) = midpoint_ab(j) - MolPBC(:)% CC(j)
end do
k = 0
do i = 1 , size(MolPBC)
na = MolPBC(i)% N_of_Atoms
do j = 1 , na
k = k + 1
AT_Q(k) = MolPBC(i)% PC% Q(j)
AT_distance(k) = sqrt( sum((midpoint_ab(:) - MolPBC(i)% PC% xyz(j,:))**2) )
AT_versor(k,:) = ( midpoint_ab(:) - MolPBC(i)% PC% xyz(j,:) ) / AT_distance(k)
end do
end do
N_of_Q = k
else
! maximum distance from midpoint a-b ...
cut_off_radius = minval(sys% T_xyz) / TWO
do j = 1 , 3
vector_ALL(:,j) = midpoint_ab(j) - MolPBC(:)% CC(j)
end do
k = 0
do i = 1 , size(MolPBC)
CC_distance = sqrt( dot_product( vector_ALL(i,:),vector_ALL(i,:) ) )
inside = ( (CC_distance > hardcore) .AND. (CC_distance < cut_off_radius) )
If( inside ) then
na = MolPBC(i)% N_of_Atoms
do j = 1 , na
AT_Q(k+j) = MolPBC(i)% PC% Q(j)
AT_distance(k+j) = sqrt( sum((midpoint_ab(:) - MolPBC(i)% PC% xyz(j,:))**2) )
AT_versor(k+j,:) = ( midpoint_ab(:) - MolPBC(i)% PC% xyz(j,:) ) / AT_distance(k+j)
end do
k = k + na
end If
end do
N_of_Q = k
end If
allocate( Q ( N_of_Q ) , source = AT_Q (1:N_of_Q ) )
allocate( distance( N_of_Q ) , source = AT_distance(1:N_of_Q ) )
allocate( versor ( N_of_Q , 3 ) , source = AT_versor (1:N_of_Q,:) )
deallocate( AT_Q , AT_distance , AT_versor )
!------------------------------------------------------------------------
! calculate dipole potential at a-b midpoint ...
!------------------------------------------------------------------------
allocate( V_phi ( N_of_Q ) , source = D_zero )
allocate( V_phi2 ( N_of_Q , 3 ) , source = D_zero )
! zeroth order potential due to point charges i ...
V_phi(:) = Q(:)/distance(:)
do j = 1 , 3
! first order ...
V_phi2(:,j) = Q(:) * ( - versor(:,j) / (distance(:)*distance(:)) )
end do
! eliminate self-interactions ...
!where( (indx == a) .OR. (indx == b) )
! V_phi = 0.d0
! V_phi2(:,1) = 0.d0
! V_phi2(:,2) = 0.d0
! V_phi2(:,3) = 0.d0
!end where
! first order ...
Q_phi(1) = sum( V_phi(:) )
! second order ...
forall( j=1:3 ) Q_phi(j+1) = sum( V_phi2(:,j) )
! applying optical dielectric screening ...
Q_phi = Q_phi * units / (refractive_index)**2
deallocate( versor , distance , Q , V_phi , V_phi2 )
end function Q_phi
!
!
!
!============================================
subroutine give_me_PBC( sys , Mol , MolPBC )
!============================================
implicit none
type(structure) , intent(in) :: sys
type(molecular) , allocatable , intent(inout) :: Mol(:)
type(molecular) , allocatable , intent(out) :: MolPBC(:)
! local variables ...
integer :: i , ix, iy, iz, j, L, n, na, N_of_M, N_of_M_pbc, nr_max
N_of_M = size(Mol)
! (VIRTUAL) REPLICAS for Period Boundary Conditions ...
N_of_M_pbc = product(2*PBC(:)+1) * N_of_M
If( .not. allocated(MolPBC) ) allocate( MolPBC(N_of_M_pbc) )
! original cell ...
forall(j=1:3) MolPBC(1:N_of_M)% CC(j) = Mol(:)% CC(j)
MolPBC(1:N_of_M)% nr = Mol(:)% nr
MolPBC(1:N_of_M)% N_of_Atoms = Mol(:)% N_of_Atoms
do concurrent (i=1:N_of_M)
na = Mol(i)% N_of_Atoms
If( .not. allocated(MolPBC(i)% PC% Q) ) Then
allocate( MolPBC(i)% PC% Q(na) )
allocate( MolPBC(i)% PC% nr(na) )
allocate( MolPBC(i)% PC% xyz(na,3) )
end If
MolPBC(i)% PC% Q = Mol(i)% PC% Q
MolPBC(i)% PC% nr = Mol(i)% PC% nr
MolPBC(i)% PC% xyz = Mol(i)% PC% xyz
end do
nr_max = Mol(N_of_M)%nr
! including the replicas
L = N_of_M
J = 0
DO iz = -PBC(3) , PBC(3)
DO iy = -PBC(2) , PBC(2)
DO ix = -PBC(1) , PBC(1)
If( (ix /= 0) .OR. (iy /= 0) .OR. (iz /= 0) ) THEN
J = J + 1
DO n = 1 , N_of_M
L = L + 1
na = MolPBC(n)% N_of_Atoms
MolPBC(L)% N_of_Atoms = na
MolPBC(L)% CC(1) = Mol(n)% CC(1) + ix * sys% T_xyz(1)
MolPBC(L)% CC(2) = Mol(n)% CC(2) + iy * sys% T_xyz(2)
MolPBC(L)% CC(3) = Mol(n)% CC(3) + iz * sys% T_xyz(3)
MolPBC(L)% nr = Mol(n)% nr + nr_max*J
If( .not. allocated(MolPBC(L)% PC% Q) ) Then
allocate( MolPBC(L)% PC% Q(na) )
allocate( MolPBC(L)% PC% nr(na) )
allocate( MolPBC(L)% PC% xyz(na,3) )
end If
MolPBC(L)% PC% xyz(1:na,1) = Mol(n)% PC% xyz(1:na,1) + ix * sys% T_xyz(1)
MolPBC(L)% PC% xyz(1:na,2) = Mol(n)% PC% xyz(1:na,2) + iy * sys% T_xyz(2)
MolPBC(L)% PC% xyz(1:na,3) = Mol(n)% PC% xyz(1:na,3) + iz * sys% T_xyz(3)
MolPBC(L)% PC% Q (1:na) = Mol(n)% PC% Q (1:na)
MolPBC(L)% PC% nr (1:na) = MolPBC(L)% nr
END DO
END IF
END DO
END DO
END DO
! don't need these anymore ...
deallocate( Mol )
end subroutine give_me_PBC
!
!
!
!===================================
subroutine Allocation( sys, a , n )
!===================================
implicit none
type(structure) , intent(in) :: sys
type(molecular) , allocatable , intent(inout) :: a(:)
integer , intent(in) :: n
! local variables ...
integer :: i , I1, I2, nr_atoms, nr, first_nr, last_nr
allocate( a(n) )
! find positions of environment molecules ...
first_nr = minval( sys%nr , sys%fragment == "S" )
last_nr = maxval( sys%nr , sys%fragment == "S" )
i = 0
do nr = first_nr , last_nr
i = i + 1
! # of atoms with tag nr ...
nr_atoms = count( sys%nr == nr )
a(i)% N_of_atoms = nr_atoms
! position of nr residue in variable sys[1:atoms] ...
I1 = minloc( sys%nr , 1 , sys%nr == nr )
I2 = (I1-1) + nr_atoms
allocate( a(i)% PC% Q (nr_atoms) )
allocate( a(i)% PC% nr (nr_atoms) )
allocate( a(i)% PC% xyz(nr_atoms,3) )
end do
end subroutine Allocation
!
!
!
end module Dielectric_Potential