-
Notifications
You must be signed in to change notification settings - Fork 5
/
TDSE_adiabatic.f
801 lines (584 loc) · 25.3 KB
/
TDSE_adiabatic.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
#include "GPU.h"
! Subroutine for computing time evolution adiabatic on the AO
module TDSE_adiabatic_m
use MPI
use type_m
use constants_m
use blas95
use MPI_definitions_m , only: master , world , myid, &
KernelComm , KernelCrew , &
ForceComm , ForceCrew , EnvCrew
use parameters_m , only: t_i , n_t , t_f , n_part , &
frame_step , nuclear_matter , &
EnvField_ , DP_Moment , &
Induced_ , QMMM , restart , &
GaussianCube , static , &
GaussianCube_step , preview , &
hole_state , electron_state , &
DensityMatrix, AutoCorrelation, &
CT_dump_step, Environ_step, &
driver, HFP_Forces , &
step_security
use Babel_m , only: Coords_from_Universe, trj, MD_dt
use Allocation_m , only: Allocate_UnitCell , &
DeAllocate_UnitCell , &
DeAllocate_Structures , &
Allocate_Brackets
use Structure_Builder , only: Unit_Cell , &
Extended_Cell , &
Generate_Structure , &
Basis_Builder
use FMO_m , only: FMO_analysis , &
orbital , eh_tag
use DP_main_m , only: Dipole_Matrix , &
Dipole_Moment
use TD_Dipole_m , only: wavepacket_DP
use Polarizability_m , only: Build_Induced_DP
use Solvated_M , only: Prepare_Solvated_System
use QCModel_Huckel , only: EigenSystem , S_root_inv
use Schroedinger_m , only: DeAllocate_QDyn
use Psi_Squared_Cube_Format , only: Gaussian_Cube_Format
use Data_Output , only: Populations
use Backup_m , only: Security_Copy , &
Restart_state , &
Restart_Sys
use MM_dynamics_m , only: MolecularMechanics , &
preprocess_MM , MoveToBoxCM
use Ehrenfest_Builder , only: EhrenfestForce
use Surface_Hopping , only: PES , verify_FSSH_jump
use Auto_Correlation_m , only: MO_Occupation
use Dielectric_Potential , only: Environment_SetUp
use F_intra_m , only: BcastQMArgs
use decoherence_m , only: apply_decoherence
public :: TDSE_adiabatic
private
! module variables ...
type(R_eigen) :: UNI , el_FMO , hl_FMO
type(STO_basis) , allocatable , dimension(:) :: ExCell_basis
Complex*16 , allocatable , dimension(:,:) :: MO_bra , MO_ket , AO_bra , AO_ket , DUAL_ket , DUAL_bra
Complex*16 , allocatable , dimension(:) :: phase
real*8 :: t
integer :: it , mm , nn
! local parameter ...
logical, parameter :: T_ = .true. , F_ = .false.
contains
!
!
!
!============================================
subroutine TDSE_adiabatic( Qdyn , final_it )
!============================================
implicit none
type(f_time) , intent(out) :: QDyn
integer , intent(out) :: final_it
! local variables ...
integer :: frame , frame_init , frame_final , frame_restart , err
integer :: mpi_D_R = mpi_double_precision
integer :: mpi_D_C = mpi_double_complex
real*8 :: t_rate
type(universe) :: Solvated_System
logical :: triggered
logical :: job_status(2) = [F_,F_] !<== [MPI_done,QMMM_done]
it = 1
t = t_i
!--------------------------------------------------------------------------------
! time slicing H(t) : Quantum Dynamics & All that Jazz ...
! time is PICOseconds in EHT & seconds in MM ...
If( nuclear_matter == "MDynamics" ) then
t_rate = t_f / float(n_t)
frame_final = n_t
else
t_rate = merge( t_f / float(n_t) , MD_dt * frame_step , MD_dt == epsilon(1.d0) )
frame_final = size(trj)
end If
If( restart ) then
CALL Restart_stuff( QDyn , frame_restart )
triggered = yes
else
CALL Preprocess( QDyn )
triggered = yes
end If
frame_init = merge( frame_restart+1 , frame_step+1 , restart )
do frame = frame_init , frame_final , frame_step
t = t + t_rate
If( (it >= n_t) .OR. (t >= t_f) ) exit
it = it + 1
! calculate for use in MM ...
If( QMMM ) then
CALL MPI_BCAST( UNI%erg , mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( UNI%L , mm*mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( MO_bra , mm*2 , mpi_D_C , 0 , KernelComm , err )
CALL MPI_BCAST( MO_ket , mm*2 , mpi_D_C , 0 , KernelComm , err )
select case (driver)
case("slice_FSSH")
CALL BcastQMArgs( Extended_Cell , ExCell_basis , MO_bra , MO_ket , UNI, t_rate )
case("slice_AO")
CALL BcastQMArgs( Extended_Cell , ExCell_basis , MO_bra , MO_ket , UNI )
end select
end If
! propagate t -> (t + t_rate) with UNI%erg(t) ...
CALL U_ad(t_rate) ! <== adiabatic component of the propagation ; 1 of 2 ...
! DUAL representation for efficient calculation of survival probabilities ...
CALL DUAL_wvpckts
! save populations(t + t_rate) and update Net_Charge ...
QDyn%dyn(it,:,:) = Populations( QDyn%fragments , ExCell_basis , DUAL_bra , DUAL_ket , t )
if( mod(it,CT_dump_step) == 0 ) CALL dump_Qdyn( Qdyn )
If( GaussianCube .AND. mod(frame,GaussianCube_step) < frame_step ) CALL Send_to_GaussianCube( frame )
If( DP_Moment ) CALL DP_stuff( "DP_moment" )
CALL DeAllocate_Structures ( Extended_Cell )
DeAllocate ( ExCell_basis )
! build new UNI(t + t_rate) ...
!============================================================================
select case ( nuclear_matter )
case( "solvated_sys" )
CALL Prepare_Solvated_System( Solvated_System , frame )
CALL DeAllocate_UnitCell ( Unit_Cell )
CALL Coords_from_Universe( Unit_Cell , Solvated_System )
case( "extended_sys" )
CALL DeAllocate_UnitCell ( Unit_Cell )
CALL Coords_from_Universe( Unit_Cell , trj(frame) )
case( "MDynamics" )
! MM preprocess ...
if( frame == frame_step+1 ) CALL preprocess_MM()
! IF QM_erg < 0 => turn off QMMM ; IF QM_erg > 0 => turn on QMMM ...
QMMM = QMMM .AND. (HFP_Forces == .true.)
! MM precedes QM ; notice calling with frame -1 ...
CALL MolecularMechanics( t_rate , frame - 1 )
case default
Print*, " >>> Check your nuclear_matter options <<< :" , nuclear_matter
stop
end select
CALL Generate_Structure( frame )
! export new coordinates to ForceCrew, for advancing their tasks in Force calculations ...
If( QMMM ) CALL MPI_BCAST( Extended_Cell%coord , Extended_Cell%atoms*3 , mpi_D_R , 0 , ForceComm, err )
CALL Basis_Builder( Extended_Cell , ExCell_basis )
If( EnvField_ ) CALL DP_stuff( "EnvField" )
If( Induced_ ) CALL DP_stuff( "Induced_DP" )
Deallocate ( UNI%R , UNI%L , UNI%erg )
CALL EigenSystem( Extended_Cell , ExCell_basis , UNI , it )
CALL U_nad(t_rate) ! <== NON-adiabatic component of the propagation ; 2 of 2 ...
if( mod(frame,step_security) == 0 ) CALL Security_Copy( MO_bra , MO_ket , DUAL_bra , DUAL_ket , AO_bra , AO_ket , t , it , frame )
If( DensityMatrix ) then
If( n_part == 1 ) CALL MO_Occupation( t, MO_bra, MO_ket, UNI )
If( n_part == 2 ) CALL MO_Occupation( t, MO_bra, MO_ket, UNI, UNI )
End If
CALL Write_Erg_Log( frame , t_rate , triggered )
job_status = check( frame , frame_final , t_rate )
CALL MPI_Bcast( job_status , 2 , mpi_logical , 0 , world , err )
end do
deallocate( MO_bra , MO_ket , AO_bra , AO_ket , DUAL_bra , DUAL_ket , phase )
final_it = it
include 'formats.h'
end subroutine TDSE_adiabatic
!
!
!
!=============================
subroutine Preprocess( QDyn )
!=============================
implicit none
type(f_time) , intent(out) :: QDyn
! local variables
integer :: hole_save , n , err
integer :: mpi_D_R = mpi_double_precision
type(universe) :: Solvated_System
logical :: job_status(2) = [F_,F_] !<== [MPI_done,QMMM_done]
! preprocessing stuff .....................................................
CALL DeAllocate_QDyn( QDyn , flag="alloc" )
select case ( nuclear_matter )
case( "solvated_sys" )
CALL Prepare_Solvated_System( Solvated_System , 1 )
CALL Coords_from_Universe( Unit_Cell , Solvated_System )
case( "extended_sys" )
CALL Coords_from_Universe( Unit_Cell , trj(1) )
case( "MDynamics" )
CALL MoveToBoxCM
case default
If( master ) Print*, " >>> Check your nuclear_matter options <<< :" , nuclear_matter
stop
end select
CALL Generate_Structure( 1 )
CALL Basis_Builder( Extended_Cell , ExCell_basis )
If( Induced_ ) CALL Build_Induced_DP( basis = ExCell_basis , instance = "allocate" )
If( EnvField_ .AND. (master .OR. EnvCrew) ) then
hole_save = hole_state
hole_state = 0
static = .true.
! Environ potential in the static GS configuration ...
CALL Environment_SetUp ( Extended_Cell )
hole_state = hole_save
static = .false.
CALL Dipole_Matrix( Extended_Cell , ExCell_basis )
end If
! ForceCrew only calculates S_matrix and return ; EnvCrew stays in hamiltonians.f ...
CALL EigenSystem( Extended_Cell , ExCell_basis , UNI , it )
! done for ForceCrew ; ForceCrew dwells in EhrenfestForce ...
If( ForceCrew ) CALL EhrenfestForce( Extended_Cell , ExCell_basis )
mm = size(ExCell_basis) ; nn = n_part
If( KernelCrew ) then
allocate( UNI%erg (mm) )
allocate( UNI%L (mm,mm) )
allocate( UNI%R (mm,mm) )
end if
CALL MPI_BCAST( UNI%erg , mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( UNI%L , mm*mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( UNI%R , mm*mm , mpi_D_R , 0 , KernelComm , err )
CALL Allocate_Brackets( mm , MO_bra , MO_ket , AO_bra , AO_ket , DUAL_bra , DUAL_ket , phase )
! done for KernelCrew ; KernelCrew dwells in EhrenfestForce ...
If( KernelCrew ) CALL EhrenfestForce( Extended_Cell , ExCell_basis , UNI , MO_bra , MO_ket )
! building up the electron and hole wavepackets with expansion coefficients at t = 0 ...
do n = 1 , n_part
select case( eh_tag(n) )
case( "el" )
CALL FMO_analysis( Extended_Cell , ExCell_basis , UNI , el_FMO , instance="E" )
MO_bra( : , n ) = el_FMO%L( orbital(n) , : )
MO_ket( : , n ) = el_FMO%R( : , orbital(n) )
If( master ) Print 591, orbital(n) , el_FMO%erg(orbital(n))
case( "hl" )
CALL FMO_analysis( Extended_Cell , ExCell_basis , UNI , hl_FMO , instance="H" )
MO_bra( : , n ) = hl_FMO%L( orbital(n) , : )
MO_ket( : , n ) = hl_FMO%R( : , orbital(n) )
Print 592, orbital(n) , hl_FMO%erg(orbital(n))
If( (orbital(n) > hl_FMO%Fermi_State) ) print*,'>>> warning: hole state above the Fermi level <<<'
end select
end do
! stop here to preview and check input and system info ...
If( preview ) stop
UNI% Fermi_state = Extended_Cell% N_of_Electrons/TWO + mod( Extended_Cell% N_of_Electrons , 2 )
! DUAL representation for efficient calculation of survival probabilities ...
CALL DUAL_wvpckts
! save populations ...
QDyn%dyn(it,:,:) = Populations( QDyn%fragments , ExCell_basis , DUAL_bra , DUAL_ket , t_i )
CALL dump_Qdyn( Qdyn )
If( GaussianCube ) CALL Send_to_GaussianCube( it )
If( DP_Moment ) CALL DP_stuff( "DP_matrix" )
If( DP_Moment ) CALL DP_stuff( "DP_moment" )
If( DensityMatrix ) then
If( n_part == 1 ) CALL MO_Occupation( t_i, MO_bra, MO_ket, UNI )
If( n_part == 2 ) CALL MO_Occupation( t_i, MO_bra, MO_ket, UNI, UNI )
End If
If( Induced_ ) CALL Build_Induced_DP( ExCell_basis , Dual_bra , Dual_ket )
! ForceCrew is on stand-by for this ...
CALL MPI_BCAST( Extended_Cell%coord , Extended_Cell%atoms*3 , mpi_D_R , 0 , ForceComm, err )
CALL MPI_Bcast( job_status , 2 , mpi_logical , 0 , world , err )
Unit_Cell% QM_erg = update_QM_erg()
!..........................................................................
include 'formats.h'
deallocate( el_FMO%L , el_FMO%R , el_FMO%erg )
deallocate( hl_FMO%L , hl_FMO%R , hl_FMO%erg )
end subroutine Preprocess
!
!
!
!
!=========================
subroutine U_ad( t_rate )
!=========================
implicit none
real*8 , intent(in) :: t_rate
! local variables ...
integer :: j
phase(:) = cdexp(- zi * UNI%erg(:) * t_rate / h_bar)
! adiabatic component of the propagation ...
forall( j=1:n_part )
MO_bra(:,j) = merge( conjg(phase(:)) * MO_bra(:,j) , C_zero , eh_tag(j) /= "XX" )
MO_ket(:,j) = merge( phase(:) * MO_ket(:,j) , C_zero , eh_tag(j) /= "XX" )
end forall
end subroutine U_ad
!
!==========================
subroutine U_nad( t_rate )
!==========================
implicit none
real*8 , intent(in) :: t_rate
! NON-adiabatic component of the propagation ...
! project back to MO_basis with UNI(t + t_rate)
select case (driver)
case("slice_FSSH") ! <== Lowdin orthogonalization ...
CALL dzgemm( 'T' , 'N' , mm , nn , mm , C_one , UNI%R , mm , Dual_ket , mm , C_zero , MO_ket , mm )
MO_bra = conjg(MO_ket)
CALL apply_decoherence( ExCell_basis , Dual_bra , PES , t_rate , MO_bra , MO_ket )
case("slice_AO") ! <== asymmetrical orthogonalization ...
CALL dzgemm( 'T' , 'N' , mm , nn , mm , C_one , UNI%R , mm , Dual_bra , mm , C_zero , MO_bra , mm )
CALL dzgemm( 'N' , 'N' , mm , nn , mm , C_one , UNI%L , mm , Dual_ket , mm , C_zero , MO_ket , mm )
end select
end subroutine U_nad
!
!
!
!=======================
subroutine DUAL_wvpckts
!=======================
implicit none
real*8 , allocatable :: aux(:,:)
! dual basis for evaluating local properties ...
select case (driver)
case("slice_FSSH") ! <== Lowdin orthogonalization ...
If( it == 1 ) then
allocate( aux(mm,mm) )
call symm( S_root_inv , UNI%R , aux )
UNI%R = aux
deallocate( aux , S_root_inv )
end If
CALL dzgemm( 'N' , 'N' , mm , nn , mm , C_one , UNI%R , mm , MO_ket , mm , C_zero , DUAL_ket , mm )
DUAL_bra = conjg(DUAL_ket)
case("slice_AO") ! <== asymmetrical orthogonalization ...
CALL dzgemm( 'N' , 'N' , mm , nn , mm , C_one , UNI%R , mm , MO_ket , mm , C_zero , DUAL_ket , mm )
CALL dzgemm( 'T' , 'N' , mm , nn , mm , C_one , UNI%L , mm , MO_bra , mm , C_zero , DUAL_bra , mm )
end select
end subroutine DUAL_wvpckts
!
!
!
!========================================
subroutine Send_to_GaussianCube( frame )
!========================================
implicit none
integer , intent(in) :: frame
! local variables ...
integer :: n
! LOCAL representation for film STO production ...
! coefs of <k(t)| in AO basis
AO_bra = DUAL_bra
! coefs of |k(t)> in AO basis
CALL DZgemm( 'T' , 'N' , mm , nn , mm , C_one , UNI%L , mm , MO_ket , mm , C_zero , AO_ket , mm )
do n = 1 , n_part
if( eh_tag(n) == "XX" ) cycle
CALL Gaussian_Cube_Format( AO_bra(:,n) , AO_ket(:,n) , frame ,t , eh_tag(n) )
end do
!----------------------------------------------------------
end subroutine Send_to_GaussianCube
!
!
!
!
!===============================
subroutine DP_stuff( instance )
!===============================
implicit none
character(*) , intent(in) :: instance
!local variables ...
integer :: i
real*8 :: Total_DP(3)
!----------------------------------------------------------
! LOCAL representation for DP calculation ...
! coefs of <k(t)| in AO basis
AO_bra = DUAL_bra
! coefs of |k(t)> in AO basis
CALL DZgemm( 'T' , 'N' , mm , nn , mm , C_one , UNI%L , mm , MO_ket , mm , C_zero , AO_ket , mm )
select case( instance )
case( "DP_matrix" )
CALL Dipole_Matrix( Extended_Cell , ExCell_basis )
case( "EnvField" )
CALL Dipole_Matrix( Extended_Cell , ExCell_basis )
! wavepacket component of the dipole vector ...
! decide what to do with this ############
!CALL wavepacket_DP( Extended_Cell , ExCell_basis , AO_bra , AO_ket , Dual_ket )
If( mod(it-1,Environ_step) == 0 ) CALL Environment_SetUp( Extended_Cell )
case( "DP_moment" )
CALL Dipole_Moment( Extended_Cell , ExCell_basis , UNI%L , UNI%R , AO_bra , AO_ket , Dual_ket , Total_DP )
If( t == t_i ) then
open( unit = 51 , file = "dyn.trunk/dipole_dyn.dat" , status = "replace" )
else
open( unit = 51 , file = "dyn.trunk/dipole_dyn.dat" , status = "unknown", action = "write" , position = "append" )
end If
write(51,'(5F10.5)') t , (Total_DP(i) , i=1,3) , sqrt( sum(Total_DP*Total_DP) )
close(51)
case( "Induced_DP" )
If( .NOT. EnvField_ ) CALL Dipole_Matrix( Extended_Cell , ExCell_basis )
CALL Build_Induced_DP( ExCell_basis , Dual_bra , Dual_ket )
end select
!----------------------------------------------------------
end subroutine DP_stuff
!
!
!
!============================
subroutine dump_Qdyn( Qdyn )
!============================
implicit none
type(f_time) , intent(in) :: QDyn
! local variables ...
integer :: nf , n
complex*16 :: wp_energy(n_part)
do n = 1 , n_part
if( eh_tag(n) == "XX" ) cycle
wp_energy(n) = sum(MO_bra(:,n)*UNI%erg(:)*MO_ket(:,n))
If( it == 1 ) then
open( unit = 52 , file = "dyn.trunk/"//eh_tag(n)//"_survival.dat" , status = "replace" , action = "write" , position = "append" )
write(52,11) "#" ,( nf+1 , nf=0,size(QDyn%fragments)+1 ) ! <== numbered columns for your eyes only ...
write(52,12) "#" , QDyn%fragments , "total"
open( unit = 53 , file = "dyn.trunk/"//eh_tag(n)//"_wp_energy.dat" , status = "replace" , action = "write" , position = "append" )
else
open( unit = 52 , file = "dyn.trunk/"//eh_tag(n)//"_survival.dat" , status = "unknown", action = "write" , position = "append" )
open( unit = 53 , file = "dyn.trunk/"//eh_tag(n)//"_wp_energy.dat" , status = "unknown", action = "write" , position = "append" )
end If
! dumps el-&-hl populations ...
write(52,13) ( QDyn%dyn(it,nf,n) , nf=0,size(QDyn%fragments)+1 )
! dumps el-&-hl wavepachet energies ...
write(53,14) QDyn%dyn(it,0,n) , real( wp_energy(n) ) , dimag( wp_energy(n) )
close(52)
close(53)
end do
11 FORMAT(A,I9,14I10)
12 FORMAT(/15A10)
13 FORMAT(F11.6,14F10.5)
14 FORMAT(3F12.6)
end subroutine dump_Qdyn
!
!
!
!========================================================
subroutine Write_Erg_Log( frame , t_rate , triggered )
!========================================================
use MM_input , only : Units_MM , MM_log_step
implicit none
integer, intent(in) :: frame
real*8 , intent(in) :: t_rate
logical, intent(inout) :: triggered
! QM_erg = E_occ - E_empty ; TO BE USED IN "MM_dynamics" FOR ENERGY BALANCE ...
Unit_Cell% QM_erg = update_QM_erg( t_rate , triggered )
Unit_Cell% Total_erg = Unit_Cell% MD_Kin + Unit_Cell% MD_Pot + Unit_Cell% QM_erg
if( mod(frame,MM_log_step) == 0 ) then
open( unit = 13 , file = "dyn.trunk/classical_E.dat" , status = "unknown", action = "write" , position = "append" )
open( unit = 16 , file = "dyn.trunk/quantum_E.dat" , status = "unknown", action = "write" , position = "append" )
select case (Units_MM)
case( "eV" )
write(13,'(F12.6,4F15.5)') t , Unit_Cell% MD_Kin, Unit_Cell% MD_Pot, Unit_Cell% MD_Kin + Unit_Cell% MD_Pot
write(16,'(F12.6,2F15.5)') t , Unit_Cell% QM_erg, Unit_Cell% Total_erg
case( "kj-mol" )
write(13,'(F12.6,4F15.5)') t , Unit_Cell% MD_Kin*eV_2_kJmol, Unit_Cell% MD_Pot*eV_2_kJmol, (Unit_Cell% MD_Kin + Unit_Cell% MD_Pot)*eV_2_kJmol
write(16,'(F12.6,2F15.5)') t , Unit_Cell% QM_erg*eV_2_kJmol, Unit_Cell% Total_erg*eV_2_kJmol
end select
close(13)
close(16)
end if
end subroutine Write_Erg_Log
!
!
!
!==============================================
function update_QM_erg( t_rate , triggered ) &
result(QM_erg)
!==============================================
implicit none
real*8 , optional , intent(in) :: t_rate
logical, optional , intent(inout) :: triggered
! local variables ...
integer :: n
real*8 :: QM_erg , Gap
complex*16 :: wp_energy(n_part)
logical :: jump
select case ( driver )
case("slice_FSSH")
If( it == 1) then
QM_erg = UNI%erg(electron_state) - UNI%erg(hole_state)
return
else
QM_erg = UNI%erg(PES(1)) - UNI%erg(PES(2))
end If
if( (QM_erg > d_zero) .AND. (PES(1) > PES(2)) ) then
! carry on QMMM with trigger ON
else if( PES(1) == PES(2) ) then
call verify_FSSH_jump( UNI%R , MO_bra , MO_ket , t_rate , jump , method = "Dynemol" )
Gap = UNI% erg( UNI%Fermi_state + 1 ) - UNI% erg( UNI%Fermi_state )
if( (Unit_Cell% MD_Kin > Gap) .AND. (jump == .true.) ) then
! back to excited-state QMMM
triggered = yes
else
! remains in GS dynamics
triggered = NO
endif
endif
QMMM = triggered
case("slice_AO")
do n = 1 , n_part
if( eh_tag(n) == "XX" ) cycle
wp_energy(n) = sum(MO_bra(:,n)*UNI%erg(:)*MO_ket(:,n))
end do
QM_erg = real( wp_energy(1) ) - real( wp_energy(2) )
If( it == 1) return
If( triggered == YES ) then
if( QM_erg > d_zero ) then
! carry on QMMM with trigger ON
else
! remains in GS dynamics
QM_erg = d_zero
triggered = NO
endif
Endif
If( triggered == NO ) then
! carry on with trigger OFF
QM_erg = d_zero
End if
! triggered = NO, turn off QMMM ...
QMMM = triggered
end select
end function update_QM_erg
!
!
!
!
!===============================================
subroutine Restart_stuff( QDyn , frame_restart )
!===============================================
implicit none
type(f_time) , intent(out) :: QDyn
integer , intent(out) :: frame_restart
! local variables ...
integer :: err
integer :: mpi_D_R = mpi_double_precision
logical :: job_status(2) = [F_,F_] !<== [MPI_done,QMMM_done]
CALL DeAllocate_QDyn ( QDyn , flag="alloc" )
If( master .OR. KernelCrew ) then
CALL Restart_State( MO_bra , MO_ket , DUAL_bra , DUAL_ket , AO_bra , AO_ket , t , it , frame_restart )
allocate( phase(size(MO_bra(:,1))) )
end If
Call mpi_barrier( world , err )
CALL Restart_Sys( Extended_Cell , ExCell_basis , Unit_Cell , DUAL_ket , AO_bra , AO_ket , frame_restart , UNI )
mm = size(ExCell_basis)
nn = n_part
! done for ForceCrew ; ForceCrew dwell in EhrenfestForce ...
If( ForceCrew ) CALL EhrenfestForce( Extended_Cell , ExCell_basis )
If( KernelCrew ) then
allocate( UNI%erg (mm) )
allocate( UNI%L (mm,mm) )
allocate( UNI%R (mm,mm) )
end if
CALL MPI_BCAST( UNI%erg , mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( UNI%L , mm*mm , mpi_D_R , 0 , KernelComm , err )
CALL MPI_BCAST( UNI%R , mm*mm , mpi_D_R , 0 , KernelComm , err )
! done for KernelCrew ; KernelCrew also dwell in EhrenfestForce ...
If( KernelCrew ) CALL EhrenfestForce( Extended_Cell , ExCell_basis , UNI , MO_bra , MO_ket )
If( Induced_ ) then
CALL Build_Induced_DP( instance = "allocate" )
CALL DP_stuff ( "Induced_DP" )
end If
! ForceCrew is on stand-by for this ...
CALL MPI_BCAST( Extended_Cell%coord , Extended_Cell%atoms*3 , mpi_D_R , 0 , ForceComm, err )
CALL MPI_Bcast( job_status , 2 , mpi_logical , 0 , world , err )
end subroutine Restart_stuff
!
!
!
!
!=============================================================
function check( frame , frame_final , t_rate ) result( flag )
!=============================================================
implicit none
integer , intent(in) :: frame
integer , intent(in) :: frame_final
real*8 , intent(in) :: t_rate
! local variables ...
logical :: flag(2) !<== [MPI_done,QMMM_done]
logical :: flag1 , flag2 , flag3
flag1 = frame + frame_step > frame_final
flag2 = it >= n_t
flag3 = t + t_rate >= t_f
! if any of these hold, MPI job from workers is done ...
flag(1) = flag1 .OR. flag2 .OR. flag3 ! <== job_done
flag(2) = .not. QMMM ! <== QMMM_done
end function check
!
!
end module TDSE_adiabatic_m