-
Notifications
You must be signed in to change notification settings - Fork 5
/
Taylor.f
309 lines (240 loc) · 8.22 KB
/
Taylor.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
module Taylor_m
use type_m , g_time => f_time
use constants_m
use blas95
use lapack95
use ifport
use parameters_m , only : t_i, frame_step, n_part, restart, CT_dump_step
use Structure_Builder , only : Unit_Cell
use Overlap_Builder , only : Overlap_Matrix
use FMO_m , only : eh_tag
use Data_Output , only : Populations
use Matrix_Math
public :: Propagation, dump_Qdyn
private
! module parameters ...
integer , parameter :: order = 25
real*8 , parameter :: error = 1.0d-8
real*8 , parameter :: norm_error = 1.0d-8
! module variables ...
real*8 , save :: save_tau
logical , save :: necessary_ = .true.
logical , save :: first_call_ = .true.
real*8 , allocatable , save :: H(:,:), H_prime(:,:), S_matrix(:,:)
contains
!
!
!
!=============================================================================================
subroutine Propagation( N , H_prime , Psi_t_bra , Psi_t_ket , t_init , t_max , tau , save_tau )
!=============================================================================================
implicit none
integer , intent(in) :: N
real*8 , intent(in) :: H_prime(:,:)
complex*16 , intent(inout) :: Psi_t_bra(:)
complex*16 , intent(inout) :: Psi_t_ket(:)
real*8 , intent(in) :: t_init
real*8 , intent(in) :: t_max
real*8 , intent(inout) :: tau
real*8 , intent(out) :: save_tau
! local variables...
complex*16 :: r
complex*16 , allocatable :: bra(:,:), ket(:,:), tmp_bra(:), tmp_ket(:), C(:)
real*8 :: norm_ref, norm_test, t
integer :: k, k_ref
logical :: OK
! complex variables ...
allocate( bra ( N , order ) ) ! redundant, only need n=2 vectors to generate the series, not n=order vectors
allocate( ket ( N , order ) )
allocate( tmp_bra ( N ) )
allocate( tmp_ket ( N ) )
allocate( C ( order ) )
norm_ref = abs(dotc(Psi_t_bra, Psi_t_ket))
! first convergence: best tau-parameter for k_ref ...
do
call Convergence( Psi_t_bra, Psi_t_ket, C, k_ref, tau, H_prime, norm_ref, OK )
if( OK ) exit
tau = tau * 0.9d0
end do
save_tau = tau
t = t_init + tau*h_bar
if( t_max-t < tau*h_bar ) then
tau = ( t_max - t ) / h_bar
C = coefficient(tau,order)
end if
! proceed evolution with best tau ...
do while( t < t_max )
! Ѱ₁ = c₁|Ѱ⟩ = |Ѱ⟩
bra(:,1) = Psi_t_bra
ket(:,1) = Psi_t_ket
tmp_bra = bra(:,1)
tmp_ket = ket(:,1)
do k = 2, k_ref
! Ѱₙ = (cₙ/cₙ₋₁) H'Ѱₙ₋₁
r = c(k)/c(k-1)
call bra_x_op( bra(:,k), bra(:,k-1), H_prime, r )
call op_x_ket( ket(:,k), H_prime, ket(:,k-1), r )
! add term Ѱₙ to series expansion
tmp_bra = tmp_bra + bra(:,k)
tmp_ket = tmp_ket + ket(:,k)
end do
! convergence criteria
norm_test = abs(dotc( tmp_bra, tmp_ket ))
if (abs( norm_test - norm_ref ) < norm_error) then
Psi_t_bra = tmp_bra
Psi_t_ket = tmp_ket
else
OK = .false.
do while( .not. OK )
tau = tau * 0.975d0
print*, "rescaling tau", tau
call Convergence( Psi_t_bra, Psi_t_ket, C, k_ref, tau, H_prime, norm_ref, OK )
end do
end if
t = t + (tau * h_bar)
if( t_max-t < tau*h_bar ) then
tau = ( t_max-t ) / h_bar
C = coefficient(tau, order)
end if
end do
deallocate( bra, ket, tmp_bra, tmp_ket, C )
end subroutine Propagation
!
!
!
!===============================================================================
subroutine Convergence( Psi_bra, Psi_ket, C, k_ref, tau, H_prime, norm_ref, OK )
!===============================================================================
implicit none
complex*16 , intent(inout) :: Psi_bra(:)
complex*16 , intent(inout) :: Psi_ket(:)
complex*16 , intent(out) :: C(:)
integer , intent(inout) :: k_ref
real*8 , intent(in) :: tau
real*8 , intent(in) :: H_prime(:,:)
real*8 , intent(in) :: norm_ref
logical , intent(out) :: OK
! local variables...
integer :: k, k_max, N
real*8 :: norm_tmp
complex*16 :: r
complex*16 , allocatable :: bra(:,:), ket(:,:), tmp_bra(:,:), tmp_ket(:,:)
#define old 1
#define new 2
N = size(Psi_bra)
allocate( bra ( N , order ) , source=C_zero )
allocate( ket ( N , order ) , source=C_zero )
allocate( tmp_bra ( N , 2 ) )
allocate( tmp_ket ( N , 2 ) )
OK = .false.
! get C_k coefficients ...
C = coefficient(tau, order)
k_max = order
do k = 2, order
if( abs( c(k) ) < 1.0d-16 ) then
k_max = k
exit
end if
end do
k_ref = k_max
! Ѱ₁ = c₁|Ѱ⟩ = |Ѱ⟩
bra(:,1) = Psi_bra(:)
ket(:,1) = Psi_ket(:)
tmp_bra(:,old) = bra(:,1)
tmp_ket(:,old) = ket(:,1)
do k = 2, k_max
! Ѱₙ = (cₙ/cₙ₋₁) H'Ѱₙ₋₁
r = c(k)/c(k-1)
call bra_x_op( bra(:,k), bra(:,k-1), H_prime, r )
call op_x_ket( ket(:,k), H_prime, ket(:,k-1), r )
! add term Ѱₙ to the expansion
tmp_bra(:,new) = tmp_bra(:,old) + bra(:,k)
tmp_ket(:,new) = tmp_ket(:,old) + ket(:,k)
! convergence criteria...
if( isConverged( tmp_bra(:,new), tmp_bra(:,old), error ) ) then
if( isConverged( tmp_ket(:,new), tmp_ket(:,old), error ) ) then
norm_tmp = abs(dotc( tmp_bra(:,new), tmp_ket(:,new) ))
if( abs( norm_tmp - norm_ref ) < norm_error ) then
Psi_bra = tmp_bra(:,new)
Psi_ket = tmp_ket(:,new)
ok = .true.
exit
end if
end if ! ket conv.
end if ! bra conv.
tmp_bra(:,old) = tmp_bra(:,new)
tmp_ket(:,old) = tmp_ket(:,new)
end do !k
deallocate( bra, ket, tmp_bra, tmp_ket )
#undef old
#undef new
end subroutine Convergence
!
!
!
!==================================
function coefficient(tau , k_max )
!==================================
implicit none
complex*16 , dimension(k_max) :: coefficient
real*8 , intent(in) :: tau
integer , intent(in) :: k_max
!local variables ...
integer :: k
coefficient(1) = C_one
do k = 2 , k_max
coefficient(k) = -zi * coefficient(k-1) * (tau/(k-1))
end do
end function coefficient
!
!
!
!=================================
subroutine dump_Qdyn( Qdyn , it )
!=================================
implicit none
type(g_time) , intent(in) :: QDyn
integer , intent(in) :: it
! local variables ...
integer :: nf , n
do n = 1 , n_part
If( eh_tag(n) == "XX" ) cycle
If( it == 1 ) then
open( unit = 52 , file = "dyn.trunk/"//eh_tag(n)//"_survival.dat" , status = "replace" , action = "write" , position = "append" )
write(52,15) "#" ,( nf+1 , nf=0,size(QDyn%fragments)+1 ) ! <== numbered columns for your eyes only ...
write(52,12) "#" , QDyn%fragments , "total"
open( unit = 53 , file = "dyn.trunk/"//eh_tag(n)//"_wp_energy.dat" , status = "replace" , action = "write" , position = "append" )
else
open( unit = 52 , file = "dyn.trunk/"//eh_tag(n)//"_survival.dat" , status = "unknown", action = "write" , position = "append" )
open( unit = 53 , file = "dyn.trunk/"//eh_tag(n)//"_wp_energy.dat" , status = "unknown", action = "write" , position = "append" )
end If
! dumps el-&-hl populations ...
write(52,13) ( QDyn%dyn(it,nf,n) , nf=0,size(QDyn%fragments)+1 )
! dumps el-&-hl wavepachet energies ...
write(53,14) QDyn%dyn(it,0,n) , real( Unit_Cell% QM_wp_erg(n) ) , dimag( Unit_Cell% QM_wp_erg(n) )
close(52)
close(53)
end do
12 FORMAT(/15A10)
13 FORMAT(F11.6,14F10.5)
14 FORMAT(3F12.6)
15 FORMAT(A,I9,14I10)
end subroutine dump_Qdyn
!
!
!
!==============================
function isConverged( a, b, tol )
! returns true if abs(a-b)<tol
!==============================
logical :: isConverged
complex*16, intent(in) :: a(:), b(:)
real*8, intent(in) :: tol
integer :: i
isConverged = .false.
do i = 1, size(a)
if( abs(a(i)-b(i)) > tol ) return ! allow earlier return if not converged
end do
isConverged = .true.
end function isConverged
end module Taylor_m