-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_mask_video.py
234 lines (189 loc) · 7.43 KB
/
detect_mask_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# USAGE
# python detect_mask_video.py
# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
import tensorflow as tf
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import os
from flask import Flask, render_template, Response
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
def gen():
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
# Start timer (for calculating frame rate)
t1 = cv2.getTickCount()
frame = videostream.read()
frame = imutils.resize(frame, width=400)
# detect faces in the frame and determine if they are wearing a
# face mask or not
(locs, preds) = detect_and_predict_mask(frame, faceNet, interpreter)
# loop over the detected face locations and their corresponding
# locations
for (box, pred) in zip(locs, preds):
# unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output
# frame
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
display_message(mask > withoutMask )
cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
# show the output frame
#cv2.imshow("Frame", frame)
#key = cv2.waitKey(1) & 0xFF
# Draw framerate in corner of frame
# Calculate framerate
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n')
@app.route('/video_feed')
def video_feed():
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
displayLed=True
from numpy import asarray
try:
from sense_hat import SenseHat
except ImportError:
displayLed=False
if displayLed:
sense = SenseHat()
CONFIDENCE=0.5
# Define some colours
g = (0, 255, 0) # Green
b = (0, 0, 0) # Black
r = (255, 0, 0) # Green
# Set up where each colour will display
creeper_mask_pixels = [
g, g, g, g, g, g, g, g,
g, g, g, g, g, g, g, g,
g, b, b, g, g, b, b, g,
g, b, b, g, g, b, b, g,
g, g, g, b, b, g, g, g,
g, g, b, b, b, b, g, g,
g, g, b, b, b, b, g, g,
g, g, b, g, g, b, g, g
]
creeper_nomakk_pixels = [
r, r, r, r, r, r, r, r,
r, r, r, r, r, r, r, r,
r, b, b, r, r, b, b, r,
r, b, b, r, r, b, b, r,
r, r, r, b, b, r, r, r,
r, r, b, b, b, b, r, r,
r, r, b, b, b, b, r, r,
r, r, b, r, r, b, r, r
]
def display_message(mask_detected):
if displayLed:
if mask_detected:
sense.set_pixels(creeper_mask_pixels)
time.sleep(2.0)
sense.clear()
else:
sense.set_pixels(creeper_nomakk_pixels)
time.sleep(0.5)
sense.clear()
time.sleep(0.5)
sense.set_pixels(creeper_nomakk_pixels)
time.sleep(0.5)
sense.clear()
def detect_and_predict_mask(frame, faceNet, maskNet):
# grab the dimensions of the frame and then construct a blob
# from it
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
faceNet.setInput(blob)
detections = faceNet.forward()
# initialize our list of faces, their corresponding locations,
# and the list of predictions from our face mask network
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > CONFIDENCE:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# add the face and bounding boxes to their respective
# lists
interpreter.set_tensor(input_details[0]['index'],face)
interpreter.invoke()
#print(output_details[0]['index'])
pred=interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
preds.append(pred)
faces.append(face)
locs.append((startX, startY, endX, endY))
# return a 2-tuple of the face locations and their corresponding
# locations
return (locs, preds)
if __name__ == '__main__':
# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
weightsPath = os.path.sep.join(["face_detector",
"res10_300x300_ssd_iter_140000.caffemodel"])
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
interpreter = tf.lite.Interpreter(model_path="mask_detector.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
details=interpreter.get_tensor_details()
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
# Initialize video stream
videostream = VideoStream(src=0).start()
time.sleep(2.0)
app.run(host='0.0.0.0', debug=True)
# do a bit of cleanup
cv2.destroyAllWindows()
videostream.stop()