forked from Arturus/kaggle-web-traffic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
496 lines (427 loc) · 22.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import tensorflow as tf
import tensorflow.contrib.cudnn_rnn as cudnn_rnn
import tensorflow.contrib.rnn as rnn
import tensorflow.contrib.layers as layers
from tensorflow.python.util import nest
from input_pipe import InputPipe, ModelMode
GRAD_CLIP_THRESHOLD = 10
RNN = cudnn_rnn.CudnnGRU
# RNN = tf.contrib.cudnn_rnn.CudnnLSTM
# RNN = tf.contrib.cudnn_rnn.CudnnRNNRelu
def default_init(seed):
# replica of tf.glorot_uniform_initializer(seed=seed)
return layers.variance_scaling_initializer(factor=1.0,
mode="FAN_AVG",
uniform=True,
seed=seed)
def selu(x):
"""
SELU activation
https://arxiv.org/abs/1706.02515
:param x:
:return:
"""
with tf.name_scope('elu') as scope:
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * tf.where(x >= 0.0, x, alpha * tf.nn.elu(x))
def make_encoder(time_inputs, encoder_features_depth, is_train, hparams, seed, transpose_output=True):
"""
Builds encoder, using CUDA RNN
:param time_inputs: Input tensor, shape [batch, time, features]
:param encoder_features_depth: Static size for features dimension
:param is_train:
:param hparams:
:param seed:
:param transpose_output: Transform RNN output to batch-first shape
:return:
"""
def build_rnn():
return RNN(num_layers=hparams.encoder_rnn_layers, num_units=hparams.rnn_depth,
#input_size=encoder_features_depth,
kernel_initializer=tf.initializers.random_uniform(minval=-0.05, maxval=0.05,
seed=seed + 1 if seed else None),
direction='unidirectional',
dropout=hparams.encoder_dropout if is_train else 0, seed=seed)
cuda_model = build_rnn()
# [batch, time, features] -> [time, batch, features]
time_first = tf.transpose(time_inputs, [1, 0, 2])
rnn_time_input = time_first
if RNN == tf.contrib.cudnn_rnn.CudnnLSTM:
rnn_out, (rnn_state, c_state) = cuda_model(inputs=rnn_time_input)
else:
rnn_out, (rnn_state,) = cuda_model(inputs=rnn_time_input)
c_state = None
if transpose_output:
rnn_out = tf.transpose(rnn_out, [1, 0, 2])
return rnn_out, rnn_state, c_state
def compressed_readout(rnn_out, hparams, dropout, seed):
"""
FC compression layer, reduces RNN output depth to hparams.attention_depth
:param rnn_out:
:param hparams:
:param dropout:
:param seed:
:return:
"""
if dropout < 1.0:
rnn_out = tf.nn.dropout(rnn_out, dropout, seed=seed)
return tf.layers.dense(rnn_out, hparams.attention_depth,
use_bias=True,
activation=selu,
kernel_initializer=layers.variance_scaling_initializer(factor=1.0, seed=seed),
name='compress_readout'
)
def make_fingerprint(x, is_train, fc_dropout, seed):
"""
Calculates 'fingerprint' of timeseries, to feed into attention layer
:param x:
:param is_train:
:param fc_dropout:
:param seed:
:return:
"""
with tf.variable_scope("fingerpint"):
# x = tf.expand_dims(x, -1)
with tf.variable_scope('convnet', initializer=layers.variance_scaling_initializer(seed=seed)):
c11 = tf.layers.conv1d(x, filters=16, kernel_size=7, activation=tf.nn.relu, padding='same')
c12 = tf.layers.conv1d(c11, filters=16, kernel_size=3, activation=tf.nn.relu, padding='same')
pool1 = tf.layers.max_pooling1d(c12, 2, 2, padding='same')
c21 = tf.layers.conv1d(pool1, filters=32, kernel_size=3, activation=tf.nn.relu, padding='same')
c22 = tf.layers.conv1d(c21, filters=32, kernel_size=3, activation=tf.nn.relu, padding='same')
pool2 = tf.layers.max_pooling1d(c22, 2, 2, padding='same')
c31 = tf.layers.conv1d(pool2, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same')
c32 = tf.layers.conv1d(c31, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same')
pool3 = tf.layers.max_pooling1d(c32, 2, 2, padding='same')
dims = pool3.shape.dims
pool3 = tf.reshape(pool3, [-1, dims[1].value * dims[2].value])
if is_train and fc_dropout < 1.0:
cnn_out = tf.nn.dropout(pool3, fc_dropout, seed=seed)
else:
cnn_out = pool3
with tf.variable_scope('fc_convnet',
initializer=layers.variance_scaling_initializer(factor=1.0, mode='FAN_IN', seed=seed)):
fc_encoder = tf.layers.dense(cnn_out, 512, activation=selu, name='fc_encoder')
out_encoder = tf.layers.dense(fc_encoder, 16, activation=selu, name='out_encoder')
return out_encoder
def attn_readout_v3(readout, attn_window, attn_heads, page_features, seed):
# input: [n_days, batch, readout_depth]
# [n_days, batch, readout_depth] -> [batch(readout_depth), width=n_days, channels=batch]
readout = tf.transpose(readout, [2, 0, 1])
# [batch(readout_depth), width, channels] -> [batch, height=1, width, channels]
inp = readout[:, tf.newaxis, :, :]
# attn_window = train_window - predict_window + 1
# [batch, attn_window * n_heads]
filter_logits = tf.layers.dense(page_features, attn_window * attn_heads, name="attn_focus",
kernel_initializer=default_init(seed)
# kernel_initializer=layers.variance_scaling_initializer(uniform=True)
# activation=selu,
# kernel_initializer=layers.variance_scaling_initializer(factor=1.0, mode='FAN_IN')
)
# [batch, attn_window * n_heads] -> [batch, attn_window, n_heads]
filter_logits = tf.reshape(filter_logits, [-1, attn_window, attn_heads])
# attns_max = tf.nn.softmax(filter_logits, dim=1)
attns_max = filter_logits / tf.reduce_sum(filter_logits, axis=1, keep_dims=True)
# [batch, attn_window, n_heads] -> [width(attn_window), channels(batch), n_heads]
attns_max = tf.transpose(attns_max, [1, 0, 2])
# [width(attn_window), channels(batch), n_heads] -> [height(1), width(attn_window), channels(batch), multiplier(n_heads)]
attn_filter = attns_max[tf.newaxis, :, :, :]
# [batch(readout_depth), height=1, width=n_days, channels=batch] -> [batch(readout_depth), height=1, width=predict_window, channels=batch*n_heads]
averaged = tf.nn.depthwise_conv2d_native(inp, attn_filter, [1, 1, 1, 1], 'VALID')
# [batch, height=1, width=predict_window, channels=readout_depth*n_neads] -> [batch(depth), predict_window, batch*n_heads]
attn_features = tf.squeeze(averaged, 1)
# [batch(depth), predict_window, batch*n_heads] -> [batch*n_heads, predict_window, depth]
attn_features = tf.transpose(attn_features, [2, 1, 0])
# [batch * n_heads, predict_window, depth] -> n_heads * [batch, predict_window, depth]
heads = [attn_features[head_no::attn_heads] for head_no in range(attn_heads)]
# n_heads * [batch, predict_window, depth] -> [batch, predict_window, depth*n_heads]
result = tf.concat(heads, axis=-1)
# attn_diag = tf.unstack(attns_max, axis=-1)
return result, None
def calc_smape_rounded(true, predicted, weights):
"""
Calculates SMAPE on rounded submission values. Should be close to official SMAPE in competition
:param true:
:param predicted:
:param weights: Weights mask to exclude some values
:return:
"""
n_valid = tf.reduce_sum(weights)
true_o = tf.round(tf.expm1(true))
pred_o = tf.maximum(tf.round(tf.expm1(predicted)), 0.0)
summ = tf.abs(true_o) + tf.abs(pred_o)
zeros = summ < 0.01
raw_smape = tf.abs(pred_o - true_o) / summ * 2.0
smape = tf.where(zeros, tf.zeros_like(summ, dtype=tf.float32), raw_smape)
return tf.reduce_sum(smape * weights) / n_valid
def smape_loss(true, predicted, weights):
"""
Differentiable SMAPE loss
:param true: Truth values
:param predicted: Predicted values
:param weights: Weights mask to exclude some values
:return:
"""
epsilon = 0.1 # Smoothing factor, helps SMAPE to be well-behaved near zero
true_o = tf.expm1(true)
pred_o = tf.expm1(predicted)
summ = tf.maximum(tf.abs(true_o) + tf.abs(pred_o) + epsilon, 0.5 + epsilon)
smape = tf.abs(pred_o - true_o) / summ * 2.0
return tf.losses.compute_weighted_loss(smape, weights, loss_collection=None)
def decode_predictions(decoder_readout, inp: InputPipe):
"""
Converts normalized prediction values to log1p(pageviews), e.g. reverts normalization
:param decoder_readout: Decoder output, shape [n_days, batch]
:param inp: Input tensors
:return:
"""
# [n_days, batch] -> [batch, n_days]
batch_readout = tf.transpose(decoder_readout)
batch_std = tf.expand_dims(inp.norm_std, -1)
batch_mean = tf.expand_dims(inp.norm_mean, -1)
return batch_readout * batch_std + batch_mean
def calc_loss(predictions, true_y, additional_mask=None):
"""
Calculates losses, ignoring NaN true values (assigning zero loss to them)
:param predictions: Predicted values
:param true_y: True values
:param additional_mask:
:return: MAE loss, differentiable SMAPE loss, competition SMAPE loss
"""
# Take into account NaN's in true values
mask = tf.is_finite(true_y)
# Fill NaNs by zeros (can use any value)
true_y = tf.where(mask, true_y, tf.zeros_like(true_y))
# Assign zero weight to NaNs
weights = tf.to_float(mask)
if additional_mask is not None:
weights = weights * tf.expand_dims(additional_mask, axis=0)
mae_loss = tf.losses.absolute_difference(labels=true_y, predictions=predictions, weights=weights)
return mae_loss, smape_loss(true_y, predictions, weights), calc_smape_rounded(true_y, predictions,
weights), tf.size(true_y)
def make_train_op(loss, ema_decay=None, prefix=None):
optimizer = tf.train.AdamOptimizer()
glob_step = tf.train.get_global_step()
# Add regularization losses
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = loss + reg_losses if reg_losses else loss
# Clip gradients
grads_and_vars = optimizer.compute_gradients(total_loss)
gradients, variables = zip(*grads_and_vars)
clipped_gradients, glob_norm = tf.clip_by_global_norm(gradients, GRAD_CLIP_THRESHOLD)
sgd_op, glob_norm = optimizer.apply_gradients(zip(clipped_gradients, variables)), glob_norm
# Apply SGD averaging
if ema_decay:
ema = tf.train.ExponentialMovingAverage(decay=ema_decay, num_updates=glob_step)
if prefix:
# Some magic to handle multiple models trained in single graph
ema_vars = [var for var in variables if var.name.startswith(prefix)]
else:
ema_vars = variables
update_ema = ema.apply(ema_vars)
with tf.control_dependencies([sgd_op]):
training_op = tf.group(update_ema)
else:
training_op = sgd_op
ema = None
return training_op, glob_norm, ema
def convert_cudnn_state_v2(h_state, hparams, seed, c_state=None, dropout=1.0):
"""
Converts RNN state tensor from cuDNN representation to TF RNNCell compatible representation.
:param h_state: tensor [num_layers, batch_size, depth]
:param c_state: LSTM additional state, should be same shape as h_state
:return: TF cell representation matching RNNCell.state_size structure for compatible cell
"""
def squeeze(seq):
return tuple(seq) if len(seq) > 1 else seq[0]
def wrap_dropout(structure):
if dropout < 1.0:
return nest.map_structure(lambda x: tf.nn.dropout(x, keep_prob=dropout, seed=seed), structure)
else:
return structure
# Cases:
# decoder_layer = encoder_layers, straight mapping
# encoder_layers > decoder_layers: get outputs of upper encoder layers
# encoder_layers < decoder_layers: feed encoder outputs to lower decoder layers, feed zeros to top layers
h_layers = tf.unstack(h_state)
if hparams.encoder_rnn_layers >= hparams.decoder_rnn_layers:
return squeeze(wrap_dropout(h_layers[hparams.encoder_rnn_layers - hparams.decoder_rnn_layers:]))
else:
lower_inputs = wrap_dropout(h_layers)
upper_inputs = [tf.zeros_like(h_layers[0]) for _ in
range(hparams.decoder_rnn_layers - hparams.encoder_rnn_layers)]
return squeeze(lower_inputs + upper_inputs)
def rnn_stability_loss(rnn_output, beta):
"""
REGULARIZING RNNS BY STABILIZING ACTIVATIONS
https://arxiv.org/pdf/1511.08400.pdf
:param rnn_output: [time, batch, features]
:return: loss value
"""
if beta == 0.0:
return 0.0
# [time, batch, features] -> [time, batch]
l2 = tf.sqrt(tf.reduce_sum(tf.square(rnn_output), axis=-1))
# [time, batch] -> []
return beta * tf.reduce_mean(tf.square(l2[1:] - l2[:-1]))
def rnn_activation_loss(rnn_output, beta):
"""
REGULARIZING RNNS BY STABILIZING ACTIVATIONS
https://arxiv.org/pdf/1511.08400.pdf
:param rnn_output: [time, batch, features]
:return: loss value
"""
if beta == 0.0:
return 0.0
return tf.nn.l2_loss(rnn_output) * beta
class Model:
def __init__(self, inp: InputPipe, hparams, is_train, seed, graph_prefix=None, asgd_decay=None, loss_mask=None):
"""
Encoder-decoder prediction model
:param inp: Input tensors
:param hparams:
:param is_train:
:param seed:
:param graph_prefix: Subgraph prefix for multi-model graph
:param asgd_decay: Decay for SGD averaging
:param loss_mask: Additional mask for losses calculation (one value for each prediction day), shape=[predict_window]
"""
self.is_train = is_train
self.inp = inp
self.hparams = hparams
self.seed = seed
self.inp = inp
encoder_output, h_state, c_state = make_encoder(inp.time_x, inp.encoder_features_depth, is_train, hparams, seed,
transpose_output=False)
# Encoder activation losses
enc_stab_loss = rnn_stability_loss(encoder_output, hparams.encoder_stability_loss / inp.train_window)
enc_activation_loss = rnn_activation_loss(encoder_output, hparams.encoder_activation_loss / inp.train_window)
# Convert state from cuDNN representation to TF RNNCell-compatible representation
encoder_state = convert_cudnn_state_v2(h_state, hparams, c_state,
dropout=hparams.gate_dropout if is_train else 1.0)
# Attention calculations
# Compress encoder outputs
enc_readout = compressed_readout(encoder_output, hparams,
dropout=hparams.encoder_readout_dropout if is_train else 1.0, seed=seed)
# Calculate fingerprint from input features
fingerprint_inp = tf.concat([inp.lagged_x, tf.expand_dims(inp.norm_x, -1)], axis=-1)
fingerprint = make_fingerprint(fingerprint_inp, is_train, hparams.fingerprint_fc_dropout, seed)
# Calculate attention vector
attn_features, attn_weights = attn_readout_v3(enc_readout, inp.attn_window, hparams.attention_heads,
fingerprint, seed=seed)
# Run decoder
decoder_targets, decoder_outputs = self.decoder(encoder_state,
attn_features if hparams.use_attn else None,
inp.time_y, inp.norm_x[:, -1])
# Decoder activation losses
dec_stab_loss = rnn_stability_loss(decoder_outputs, hparams.decoder_stability_loss / inp.predict_window)
dec_activation_loss = rnn_activation_loss(decoder_outputs, hparams.decoder_activation_loss / inp.predict_window)
# Get final denormalized predictions
self.predictions = decode_predictions(decoder_targets, inp)
# Calculate losses and build training op
if inp.mode == ModelMode.PREDICT:
# Pseudo-apply ema to get variable names later in ema.variables_to_restore()
# This is copypaste from make_train_op()
if asgd_decay:
self.ema = tf.train.ExponentialMovingAverage(decay=asgd_decay)
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if graph_prefix:
ema_vars = [var for var in variables if var.name.startswith(graph_prefix)]
else:
ema_vars = variables
self.ema.apply(ema_vars)
else:
self.mae, smape_loss, self.smape, self.loss_item_count = calc_loss(self.predictions, inp.true_y,
additional_mask=loss_mask)
if is_train:
# Sum all losses
total_loss = smape_loss + enc_stab_loss + dec_stab_loss + enc_activation_loss + dec_activation_loss
self.train_op, self.glob_norm, self.ema = make_train_op(total_loss, asgd_decay, prefix=graph_prefix)
def default_init(self, seed_add=0):
return default_init(self.seed + seed_add)
def decoder(self, encoder_state, attn_features, prediction_inputs, previous_y):
"""
:param encoder_state: shape [batch_size, encoder_rnn_depth]
:param prediction_inputs: features for prediction days, tensor[batch_size, time, input_depth]
:param previous_y: Last day pageviews, shape [batch_size]
:param attn_features: Additional features from attention layer, shape [batch, predict_window, readout_depth*n_heads]
:return: decoder rnn output
"""
hparams = self.hparams
def build_cell(idx):
with tf.variable_scope('decoder_cell', initializer=self.default_init(idx)):
cell = rnn.GRUBlockCell(self.hparams.rnn_depth)
has_dropout = hparams.decoder_input_dropout[idx] < 1 \
or hparams.decoder_state_dropout[idx] < 1 or hparams.decoder_output_dropout[idx] < 1
if self.is_train and has_dropout:
attn_depth = attn_features.shape[-1].value if attn_features is not None else 0
input_size = attn_depth + prediction_inputs.shape[-1].value + 1 if idx == 0 else self.hparams.rnn_depth
cell = rnn.DropoutWrapper(cell, dtype=tf.float32, input_size=input_size,
variational_recurrent=hparams.decoder_variational_dropout[idx],
input_keep_prob=hparams.decoder_input_dropout[idx],
output_keep_prob=hparams.decoder_output_dropout[idx],
state_keep_prob=hparams.decoder_state_dropout[idx], seed=self.seed + idx)
return cell
if hparams.decoder_rnn_layers > 1:
cells = [build_cell(idx) for idx in range(hparams.decoder_rnn_layers)]
cell = rnn.MultiRNNCell(cells)
else:
cell = build_cell(0)
nest.assert_same_structure(encoder_state, cell.state_size)
predict_days = self.inp.predict_window
assert prediction_inputs.shape[1] == predict_days
# [batch_size, time, input_depth] -> [time, batch_size, input_depth]
inputs_by_time = tf.transpose(prediction_inputs, [1, 0, 2])
# Return raw outputs for RNN losses calculation
return_raw_outputs = self.hparams.decoder_stability_loss > 0.0 or self.hparams.decoder_activation_loss > 0.0
# Stop condition for decoding loop
def cond_fn(time, prev_output, prev_state, array_targets: tf.TensorArray, array_outputs: tf.TensorArray):
return time < predict_days
# FC projecting layer to get single predicted value from RNN output
def project_output(tensor):
return tf.layers.dense(tensor, 1, name='decoder_output_proj', kernel_initializer=self.default_init())
def loop_fn(time, prev_output, prev_state, array_targets: tf.TensorArray, array_outputs: tf.TensorArray):
"""
Main decoder loop
:param time: Day number
:param prev_output: Output(prediction) from previous step
:param prev_state: RNN state tensor from previous step
:param array_targets: Predictions, each step will append new value to this array
:param array_outputs: Raw RNN outputs (for regularization losses)
:return:
"""
# RNN inputs for current step
features = inputs_by_time[time]
# [batch, predict_window, readout_depth * n_heads] -> [batch, readout_depth * n_heads]
if attn_features is not None:
# [batch_size, 1] + [batch_size, input_depth]
attn = attn_features[:, time, :]
# Append previous predicted value + attention vector to input features
next_input = tf.concat([prev_output, features, attn], axis=1)
else:
# Append previous predicted value to input features
next_input = tf.concat([prev_output, features], axis=1)
# Run RNN cell
output, state = cell(next_input, prev_state)
# Make prediction from RNN outputs
projected_output = project_output(output)
# Append step results to the buffer arrays
if return_raw_outputs:
array_outputs = array_outputs.write(time, output)
array_targets = array_targets.write(time, projected_output)
# Increment time and return
return time + 1, projected_output, state, array_targets, array_outputs
# Initial values for loop
loop_init = [tf.constant(0, dtype=tf.int32),
tf.expand_dims(previous_y, -1),
encoder_state,
tf.TensorArray(dtype=tf.float32, size=predict_days),
tf.TensorArray(dtype=tf.float32, size=predict_days) if return_raw_outputs else tf.constant(0)]
# Run the loop
_, _, _, targets_ta, outputs_ta = tf.while_loop(cond_fn, loop_fn, loop_init)
# Get final tensors from buffer arrays
targets = targets_ta.stack()
# [time, batch_size, 1] -> [time, batch_size]
targets = tf.squeeze(targets, axis=-1)
raw_outputs = outputs_ta.stack() if return_raw_outputs else None
return targets, raw_outputs