-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
51 lines (41 loc) · 1.51 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# coding: UTF-8
import time
import torch
import numpy as np
from train_eval import train, init_network,test
from importlib import import_module
from utils import build_dataset, build_iterator, get_time_dif
def _to_tensor(datas):
x = torch.LongTensor([_[0] for _ in datas])
# y = torch.LongTensor([_[1] for _ in datas]).to(device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[2] for _ in datas])
mask = torch.LongTensor([_[3] for _ in datas])
return (x, seq_len, mask)
if __name__ == '__main__':
dataset = 'THUCNews' # 数据集
# 使用什么模型
model_name = 'bert' # bert
# 导入响应的模型
x = import_module('models.' + model_name)
# 相应模型的配置
config = x.Config(dataset)
# 随机种子
np.random.seed(1)
# 设置随机种子
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True # 保证每次结果一样
start_time = time.time()
print("Loading data...")
# 构建数据
train_question,test_question,test_answer = build_dataset(config)
train_question = build_iterator(train_question, config)
test_question = build_iterator(test_question, config)
test_answer = _to_tensor(test_answer)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# train
model = x.Model(config).to(config.device)
train(config, model, train_question, test_question,test_answer)
# test(config,model,test_question,test_answer)