-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataloader.py
216 lines (180 loc) · 7.71 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import time
class GenDataLoader(object):
def __init__(self, batch_size, source_index, source_len, target_idx, target_len,
max_len, source_label=None, memory=None):
assert len(source_index) == len(target_idx)
self.batch_size = batch_size
self.source_idx = source_index
self.source_len = source_len
self.target_idx = target_idx
self.target_len = target_len
self.max_len = max_len
self.has_label = False
if source_label is not None:
self.has_label = True
self.source_label = source_label
if memory is not None:
self.has_mem = True
self.memory = memory
self.num_batch = len(source_index) // batch_size
def create_batch(self):
self.si_batch = np.split(self.source_idx[:self.num_batch * self.batch_size], self.num_batch)
self.sl_batch = np.split(self.source_len[:self.num_batch * self.batch_size], self.num_batch)
self.tl_batch = np.split(self.target_len[:self.num_batch * self.batch_size], self.num_batch)
self.ti_batch = np.split(self.target_idx[:self.num_batch * self.batch_size], self.num_batch)
if self.has_label:
self.slbl = np.split(self.source_label[:self.num_batch * self.batch_size], self.num_batch)
if self.has_mem:
self.smem = np.split(self.memory[:self.num_batch * self.batch_size], self.num_batch)
self.g_pointer = 0
def next_batch(self):
generator_batch = [self.si_batch[self.g_pointer],
self.sl_batch[self.g_pointer],
self.ti_batch[self.g_pointer],
self.tl_batch[self.g_pointer],
]
if self.has_label:
generator_batch.append(self.slbl[self.g_pointer])
if self.has_mem:
generator_batch.append(self.smem[self.g_pointer])
self.g_pointer = (self.g_pointer + 1) % self.num_batch
return generator_batch
def reset_pointer(self):
self.g_pointer = 0
class DisDataLoader(object):
def __init__(self, sess, generator, batch_size, max_len, num_class, topic_input, topic_len, topic_label, target_idx,
memory):
self.batch_size = batch_size
self.max_len = max_len
self.num_class = num_class
self.G = generator
self.sess = sess
self.topic_input = topic_input
self.topic_len = topic_len
self.topic_label = topic_label
self.target_idx = target_idx
self.memory = memory
def prepare_data(self, generate_batches):
generate_num = generate_batches * self.G.batch_size
if generate_num > len(self.topic_input):
generate_batches = len(self.topic_input) // self.G.batch_size
generate_num = generate_batches * self.G.batch_size
# shuffle
ti, tl, tlbl, tidx, tmem = shuffle_data(generate_num, self.topic_input, self.topic_len,
self.topic_label, self.target_idx, self.memory)
# print(tidx.shape) # batch_size x dynamic_length
# print("shuffle time cost: %.3f" % (time.time() - t0))
fake_idx = []
t1 = time.time()
for gb in range(generate_batches):
# print(gb)
# print(ti[gb * self.G.batch_size:(gb+1) * self.G.batch_size])
fake_idx.extend(self.G.generate_essay(self.sess,
ti[gb * self.G.batch_size:(gb + 1) * self.G.batch_size],
tl[gb * self.G.batch_size:(gb + 1) * self.G.batch_size],
memory=tmem[gb * self.G.batch_size: (gb + 1) * self.G.batch_size]))
print("generate time cost: %.4f" % (time.time() - t1))
# print(tidx.shape)
# print(fake_idx.shape)
fake_label = np.zeros([1, self.num_class], dtype=int)
fake_label[0, self.num_class - 1] += 1 # one-hot at last dimension
fake_labels = np.repeat(fake_label, len(fake_idx), axis=0)
padded_fake = self._padding(fake_idx, self.max_len)
padded_true = self._pad_numpy(tidx, self.max_len)
self.idx = np.concatenate([padded_fake, padded_true], axis=0)
# print(fake_labels.shape)
# print(tlbl.shape)
self.labels = np.concatenate([fake_labels, tlbl], axis=0)
# split batches
self.num_batch = int(len(self.labels) / self.batch_size)
self.idx = self.idx[:self.num_batch * self.batch_size]
self.labels = self.labels[:self.num_batch * self.batch_size]
self.idx_batches = np.split(self.idx, self.num_batch, 0)
self.labels_batches = np.split(self.labels, self.num_batch, 0)
self.pointer = 0
def prepare_data_no_fake(self):
tlbl, tidx = shuffle_data(len(self.topic_input),
self.topic_label, self.target_idx)
self.idx = self._pad_numpy(tidx, self.max_len)
self.labels = tlbl
self.num_batch = int(len(self.labels) / self.batch_size)
self.idx = self.idx[:self.num_batch * self.batch_size]
self.labels = self.labels[:self.num_batch * self.batch_size]
self.idx_batches = np.split(self.idx, self.num_batch, 0)
self.labels_batches = np.split(self.labels, self.num_batch, 0)
self.pointer = 0
def next_batch(self):
batch_idx, batch_label = self.idx_batches[self.pointer], self.labels_batches[self.pointer]
self.pointer = (self.pointer + 1) % self.num_batch
return batch_idx, batch_label
def _pad_numpy(self, index, max_len):
batch_size = len(index)
padded = np.zeros([batch_size, max_len], dtype=int)
for i in range(batch_size):
true_len = min(max_len, len(index[i]))
for j in range(true_len):
padded[i, j] = index[i][j]
return padded
def _padding(self, inputs, max_sequence_length):
batch_size = len(inputs)
inputs_batch_major = np.zeros(shape=[batch_size, max_sequence_length], dtype=np.int32) # == PAD
for i, seq in enumerate(inputs):
for j, element in enumerate(seq):
inputs_batch_major[i, j] = element
return inputs_batch_major
def reset(self):
self.pointer = 0
def shuffle_data(num, *data):
size = len(data[0])
permutation = np.random.permutation(size)
ret = []
for d in data:
d = d[permutation]
ret.append(d[:num])
return ret
def padding(index, max_len):
batch_size = len(index)
padded = np.zeros([batch_size, max_len])
for i, seq in enumerate(index):
for j, element in enumerate(seq):
padded[i, j] = element
return padded
def get_weights(lengths, max_len):
x_len = len(lengths)
ans = np.zeros((x_len, max_len))
for ll in range(x_len):
kk = lengths[ll] - 1
for jj in range(kk):
# print(ll)
# print(jj)
ans[ll][jj] = 1 / float(kk)
return ans
def prepare_data(test_ratio, *data):
length = len(data[0])
test_size = int(length * test_ratio)
print(test_size)
print(length - test_size)
permute = np.random.permutation(length)
train = []
test = []
for d in data:
d = d[permute]
d_test = d[:test_size]
d_train = d[test_size:]
train.append(d_train)
test.append(d_test)
return train, test
def load_npy(data_config):
ret = []
# print(data_config)
for item in data_config:
# print(item)
ret.append(np.load(item))
return ret
def to_one_hot(arr, num_class):
size = len(arr)
lbl = np.zeros([size, num_class])
for i in range(size):
lbl[i, arr[i]] += 1
return lbl