-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdiscrminator.py
224 lines (191 loc) · 10.1 KB
/
discrminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import tensorflow as tf
from config import Config
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import train_test_split
def linear(input_, output_size, scope=None):
"""
Linear map: output[k] = sum_i(Matrix[k, i] * input_[i] ) + Bias[k]
Args:
input_: a tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(input_[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
shape = input_.get_shape().as_list()
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shape))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shape))
input_size = shape[1]
# Now the computation.
with tf.variable_scope(scope or "SimpleLinear"):
matrix = tf.get_variable("Matrix", [output_size, input_size], dtype=input_.dtype)
bias_term = tf.get_variable("Bias", [output_size], dtype=input_.dtype)
return tf.matmul(input_, tf.transpose(matrix)) + bias_term
def highway(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu, scope='Highway'):
"""Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
with tf.variable_scope(scope):
for idx in range(num_layers):
g = f(linear(input_, size, scope='highway_lin_%d' % idx))
t = tf.sigmoid(linear(input_, size, scope='highway_gate_%d' % idx) + bias)
output = t * g + (1. - t) * input_
input_ = output
return output
class Discriminator:
def __init__(self, config):
# configuration
self.max_len = config["max_len"]
# topic nums + 1
self.num_classes = config["n_class"]
self.vocab_size = config["vocab_size"]
self.embedding_size = config["embedding_size"]
self.filter_sizes = config["filter_sizes"]
self.num_filters = config["num_filters"]
self.l2_reg_lambda = config["l2_reg_lambda"]
self.topic_num = config["topic_num"]
self.learning_rate = config["learning_rate"]
# label_smooth positive : 1 -> alpha
self.ls_alpha = config["label_smooth"]
# placeholder
self.input_x = tf.placeholder(tf.int32, [None, self.max_len], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, self.num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
def build_graph(self, calc_f1=False):
print("building discriminator graph ... ")
l2_loss = tf.constant(0.0)
with tf.variable_scope("discriminator"):
# Embedding:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) # batch_size * seq * embedding_size
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
pooled_outputs = list()
# Create a convolution + max-pool layer for each filter size
for filter_size, filter_num in zip(self.filter_sizes, self.num_filters):
with tf.name_scope("cov2d-maxpool%s" % filter_size):
filter_shape = [filter_size, self.embedding_size, 1, filter_num]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[filter_num]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# print(conv.name, ": ", conv.shape) batch * (seq - filter_shape) + 1 * 1(output channel) *
# filter_num
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
pooled = tf.nn.max_pool(
h,
ksize=[1, self.max_len - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool") # 全部池化到 1x1
# print(conv.name, ": ", conv.shape , "----", pooled.name, " : " ,pooled.shape)
pooled_outputs.append(pooled)
total_filters_num = sum(self.num_filters)
self.h_pool = tf.concat(pooled_outputs, 3)
# print(self.h_pool.shape) # batch * 1 * 1 * total_filters_num
self.h_pool_flat = tf.reshape(self.h_pool, [-1, total_filters_num]) # batch * total_num
with tf.name_scope("highway"):
self.h_highway = highway(self.h_pool_flat, self.h_pool_flat.get_shape()[1], 1, 0)
# add droppout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_highway, self.dropout_keep_prob)
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal([total_filters_num, self.num_classes], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.ypred_for_auc = tf.nn.sigmoid(self.scores)
reward_masked = self.ypred_for_auc * self.input_y
total_reward = tf.reduce_sum(reward_masked, axis=1)
label_num = tf.count_nonzero(self.input_y, axis=1, dtype=tf.float32) # one hot
# senti GAN :use penalty-based objective 1 - reward
self.rewards_for_mlc = 1 - tf.divide(total_reward, label_num)
# origin SeqGAN
# self.rewards_for_mlc = tf.divide(total_reward, label_num)
self.predictions = self._multi_label_hot(self.ypred_for_auc)
self.hamming_loss = tf.reduce_mean(
tf.reduce_sum(tf.cast(
tf.logical_xor(tf.cast(self.predictions, tf.bool), tf.cast(self.input_y, tf.bool)), tf.float32),
axis=1),
axis=0)
# print(self.predictions.shape) # self_size x num_class
with tf.name_scope("loss"):
if self.ls_alpha:
smooth_target = self.input_y * self.ls_alpha # may need temperature ?
losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.scores, labels=smooth_target)
# losses = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.scores, labels=self.input_y)
multi_class_loss = tf.reduce_mean(
tf.reduce_sum(losses, axis=1)
)
self.loss = multi_class_loss + self.l2_reg_lambda * l2_loss
with tf.name_scope("accuracy"):
# print(self.input_y.shape)
self.accuracy = tf.reduce_mean(
tf.cast(tf.equal(self.predictions, self.input_y), tf.float32))
# micro-f1 precision and recall
self.m_p, self.m_r, self.m_f1 = self.micro_f1(self.predictions, self.input_y)
self.params = [param for param in tf.trainable_variables() if 'discriminator' in param.name]
d_optimizer = tf.train.AdamOptimizer(self.learning_rate)
# aggregation_method =2 能够帮助减少内存占用
grads_and_vars = d_optimizer.compute_gradients(self.loss, self.params, aggregation_method=2)
self.train_op = d_optimizer.apply_gradients(grads_and_vars)
print("discriminator graph successfully built!")
def _multi_label_hot(self, prediction, name="prediction", threshold=0.7):
prediction = tf.cast(prediction, tf.float32)
threshold = float(threshold)
return tf.cast(tf.greater(prediction, threshold), tf.float32, name=name)
def micro_f1(self, pred, label):
tp = tf.reduce_mean(tf.reduce_sum(pred * label, axis=1))
fn = tf.reduce_mean(tf.reduce_sum(tf.cast(tf.logical_xor(
tf.cast(pred, tf.bool), tf.cast(label, tf.bool)
), tf.float32) * label, axis=1))
fp = tf.reduce_mean(tf.reduce_sum(tf.cast(tf.logical_xor(
tf.cast(pred, tf.bool), tf.cast(label, tf.bool)
), tf.float32) * pred, axis=1))
p = tp / (tp + fp + 1e-6)
r = tp / (tp + fn + 1e-6)
f1 = 2 * p * r / (p + r + 1e-6)
return p, r, f1
@staticmethod
def restore(sess, saver, path):
saver.restore(sess, save_path=path)
print("discrminator load successfully!")
def _make_train_fd(self, x_batch, y_batch):
return {self.input_x: x_batch,
self.input_y: y_batch,
self.dropout_keep_prob: .5}
def run_train_epoch(self, sess, x_batch, y_batch, fetch_f1=False):
fd = self._make_train_fd(x_batch, y_batch)
fetch = [self.train_op, self.loss, self.accuracy, self.hamming_loss]
if fetch_f1:
fetch.extend([self.m_f1, self.m_p, self.m_r])
return sess.run(fetch, feed_dict=fd)
def _make_test_fd(self, x_batch, y_batch):
return {self.input_x: x_batch,
self.input_y: y_batch,
self.dropout_keep_prob: 1.0}
def run_test_epoch(self, sess, x_batch, y_batch, fetch_f1=False):
fd = self._make_test_fd(x_batch, y_batch)
fetch = [self.accuracy, self.hamming_loss]
if fetch_f1:
fetch.extend([self.m_f1, self.m_p, self.m_r])
return sess.run(fetch, feed_dict=fd)
if __name__ == '__main__':
# test model
config = Config()
model = Discriminator(config.discriminator_config)
model.build_graph()