forked from nervosnetwork/ckb-c-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ckb_dlfcn.h
477 lines (441 loc) · 14.1 KB
/
ckb_dlfcn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#ifndef CKB_C_STDLIB_CKB_DLFCN_H_
#define CKB_C_STDLIB_CKB_DLFCN_H_
#include "ckb_syscalls.h"
int ckb_dlopen(const uint8_t *dep_cell_data_hash, uint8_t *aligned_addr,
size_t aligned_size, void **handle, size_t *consumed_size) {
return ckb_dlopen2(dep_cell_data_hash, 0, aligned_addr, aligned_size, handle,
consumed_size);
}
#ifndef CKB_STDLIB_NO_SYSCALL_IMPL
int _ckb_load_cell_code(void *addr, size_t memory_size, size_t content_offset,
size_t content_size, size_t index, size_t source) {
return syscall(SYS_ckb_load_cell_data_as_code, addr, memory_size,
content_offset, content_size, index, source);
}
/*
* The ELF parsing code here is inspired from
* https://github.com/riscv/riscv-pk/blob/master/pk/elf.h, original code is in
* BSD license.
*/
typedef struct {
uint8_t e_ident[16];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint64_t e_entry;
uint64_t e_phoff;
uint64_t e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;
} Elf64_Ehdr;
#define SHT_STRTAB 3
#define SHT_RELA 4
#define SHT_DYNSYM 11
typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
uint64_t sh_addr;
uint64_t sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;
} Elf64_Shdr;
#define PT_LOAD 1
#define PF_X 1
typedef struct {
uint32_t p_type;
uint32_t p_flags;
uint64_t p_offset;
uint64_t p_vaddr;
uint64_t p_paddr;
uint64_t p_filesz;
uint64_t p_memsz;
uint64_t p_align;
} Elf64_Phdr;
typedef struct {
uint32_t st_name;
uint8_t st_info;
uint8_t st_other;
uint16_t st_shndx;
uint64_t st_value;
uint64_t st_size;
} Elf64_Sym;
#define R_RISCV_RELATIVE 3
#define R_RISCV_JUMP_SLOT 5
typedef struct {
uint64_t r_offset;
uint64_t r_info;
int64_t r_addend;
} Elf64_Rela;
#define RISCV_PGSIZE 4096
#ifndef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
#define ERROR_CONTEXT_FAILURE -21
#define ERROR_INVALID_ELF -22
#define ERROR_MEMORY_NOT_ENOUGH -23
#define ERROR_OUT_OF_BOUND -24
#define ERROR_INVALID_ARGS -25
#define ERROR_ELF_NOT_ALIGNED -26
typedef struct {
Elf64_Sym *dynsyms;
const char *dynstr;
size_t dynsym_size;
uint8_t *base_addr;
size_t size;
} CkbDlfcnContext;
int check_in_range(const void *p, const CkbDlfcnContext *context) {
uint64_t end;
void *begin = context->base_addr;
if (__builtin_uaddl_overflow((uint64_t)context->base_addr, context->size,
&end)) {
return 0;
}
if (begin <= p && p < (void *)end) {
return 1;
} else {
return 0;
}
}
int roundup(uint64_t a, uint64_t b, uint64_t *value) {
if (a == 0) {
*value = 0;
return 0;
}
uint64_t d = (a - 1) / b;
return __builtin_umull_overflow(d + 1, b, value);
}
uint8_t *addr_offset_checked(uint8_t *aligned_addr, uint64_t aligned_size,
uint64_t offset) {
uint64_t target = 0;
if (offset < aligned_size) {
if (__builtin_uaddl_overflow((uint64_t)aligned_addr, offset, &target)) {
return 0;
} else {
return (uint8_t *)target;
}
} else {
return 0;
}
}
void *addr_offset_with_context(const void *addr, uint64_t offset,
const CkbDlfcnContext *context) {
uint64_t target = 0;
if (__builtin_uaddl_overflow((uint64_t)addr, offset, &target)) {
return 0;
} else {
if (!check_in_range((const void *)target, context)) {
return 0;
} else {
return (void *)target;
}
}
}
int ckb_dlopen2(const uint8_t *dep_cell_hash, uint8_t hash_type,
uint8_t *aligned_addr, size_t aligned_size, void **handle,
size_t *consumed_size) {
if (sizeof(CkbDlfcnContext) > RISCV_PGSIZE || aligned_size < RISCV_PGSIZE) {
return ERROR_CONTEXT_FAILURE;
}
if (((uint64_t)aligned_addr) < 8) {
return ERROR_CONTEXT_FAILURE;
}
if (dep_cell_hash == 0 || aligned_size == 0 || aligned_addr == 0 ||
handle == 0 || consumed_size == 0) {
return ERROR_INVALID_ARGS;
}
uint64_t _end = 0;
if (__builtin_uaddl_overflow((uint64_t)aligned_addr, aligned_size, &_end)) {
return ERROR_OUT_OF_BOUND;
}
CkbDlfcnContext *context = (CkbDlfcnContext *)aligned_addr;
memset(context, 0, sizeof(CkbDlfcnContext));
aligned_addr += RISCV_PGSIZE;
aligned_size -= RISCV_PGSIZE;
context->base_addr = aligned_addr;
context->size = aligned_size;
size_t index = SIZE_MAX;
int ret = ckb_look_for_dep_with_hash2(dep_cell_hash, hash_type, &index);
if (ret != CKB_SUCCESS) {
return ret;
}
/* Basic ELF header parsing */
Elf64_Ehdr header;
uint64_t len = sizeof(header);
ret =
ckb_load_cell_data((void *)&header, &len, 0, index, CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (len < sizeof(header)) {
return ERROR_INVALID_ELF;
}
if ((header.e_phentsize != sizeof(Elf64_Phdr)) ||
(header.e_shentsize != sizeof(Elf64_Shdr)) || (header.e_phnum > 16) ||
(header.e_shnum > 32)) {
return ERROR_INVALID_ELF;
}
/* Parse program headers and load relevant parts */
Elf64_Phdr program_headers[16];
len = sizeof(Elf64_Phdr) * header.e_phnum;
ret = ckb_load_cell_data((void *)program_headers, &len, header.e_phoff, index,
CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (len < sizeof(Elf64_Phdr) * header.e_phnum) {
return ERROR_INVALID_ELF;
}
uint64_t max_consumed_size = 0;
for (int i = 0; i < header.e_phnum; i++) {
const Elf64_Phdr *ph = &program_headers[i];
if (ph->p_type == PT_LOAD && ph->p_memsz > 0) {
if ((ph->p_flags & PF_X) != 0) {
uint64_t prepad = ph->p_vaddr % RISCV_PGSIZE;
uint64_t vaddr = ph->p_vaddr - prepad;
uint64_t memsz = 0;
if (roundup(prepad + ph->p_memsz, RISCV_PGSIZE, &memsz)) {
return ERROR_INVALID_ELF;
}
unsigned long size = 0;
if (__builtin_uaddl_overflow(vaddr, memsz, &size)) {
return ERROR_INVALID_ELF;
}
if (size > aligned_size) {
return ERROR_MEMORY_NOT_ENOUGH;
}
uint8_t *addr2 = addr_offset_checked(aligned_addr, aligned_size, vaddr);
if (addr2 == 0) {
return ERROR_INVALID_ELF;
}
/*
* There is a slight defect in current syscall: if the padding
* required for memory alignment is bigger than the ELF starting
* offset to load, there is not a way for current syscall to correctly
* load the ELF. We use a check here to guard for the condition, and
* exit when it is not satisfied. A better solution might to explicitly
* ask for page aligned code section in linker, or wait for a fixed
* syscall version.
*/
if (ph->p_offset < prepad) {
return ERROR_ELF_NOT_ALIGNED;
}
ret = _ckb_load_cell_code(addr2, memsz, ph->p_offset - prepad,
ph->p_filesz + prepad, index,
CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
max_consumed_size = MAX(max_consumed_size, vaddr + memsz);
} else {
uint64_t filesz = ph->p_filesz;
uint64_t memsz = ph->p_memsz;
uint64_t size = 0;
uint64_t gap_len = 0;
if (filesz > memsz) {
return ERROR_INVALID_ELF;
}
gap_len = memsz - filesz;
if (__builtin_uaddl_overflow(ph->p_vaddr, memsz, &size)) {
return ERROR_INVALID_ELF;
}
uint64_t consumed_end = 0;
if (roundup(size, RISCV_PGSIZE, &consumed_end)) {
return ERROR_INVALID_ELF;
}
if (consumed_end > aligned_size) {
return ERROR_MEMORY_NOT_ENOUGH;
}
uint8_t *addr2 =
addr_offset_checked(aligned_addr, aligned_size, ph->p_vaddr);
if (addr2 == 0) {
return ERROR_INVALID_ELF;
}
uint64_t read_len = filesz;
ret = ckb_load_cell_data(addr2, &read_len, ph->p_offset, index,
CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (read_len < filesz) {
return ERROR_INVALID_ELF;
}
if (gap_len > 0) {
uint8_t *addr3 = addr_offset_with_context(addr2, filesz, context);
uint8_t *addr4 =
addr_offset_with_context(addr3, gap_len - 1, context);
if (addr3 != 0 && addr4 != 0) {
memset(addr3, 0, gap_len);
} else {
return ERROR_INVALID_ELF;
}
}
max_consumed_size = MAX(max_consumed_size, consumed_end);
}
}
}
/*
* Parse sectioin header & relocation headers,
* Perform necessary relocations.
*/
Elf64_Shdr section_headers[32];
len = sizeof(Elf64_Shdr) * header.e_shnum;
ret = ckb_load_cell_data((void *)section_headers, &len, header.e_shoff, index,
CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (len < sizeof(Elf64_Shdr) * header.e_shnum) {
return ERROR_INVALID_ELF;
}
if (header.e_shstrndx >= 32 || header.e_shstrndx >= header.e_shnum) {
return ERROR_INVALID_ELF;
}
/*
* First load shstrtab tab, this is temporary code only needed in ELF loading
* phase here.
*/
Elf64_Shdr *shshrtab = §ion_headers[header.e_shstrndx];
char shrtab[4096];
if (shshrtab->sh_size > 4096) {
return ERROR_INVALID_ELF;
}
uint64_t shrtab_len = shshrtab->sh_size;
ret = ckb_load_cell_data((void *)shrtab, &shrtab_len, shshrtab->sh_offset,
index, CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (shrtab_len < shshrtab->sh_size) {
return ERROR_INVALID_ELF;
}
for (int i = 0; i < header.e_shnum; i++) {
const Elf64_Shdr *sh = §ion_headers[i];
if (sh->sh_type == SHT_RELA) {
if (sh->sh_entsize != sizeof(Elf64_Rela)) {
return ERROR_INVALID_ELF;
}
size_t relocation_size = sh->sh_size / sh->sh_entsize;
uint64_t current_offset = sh->sh_offset;
while (relocation_size > 0) {
Elf64_Rela relocations[64];
size_t load_size = MIN(relocation_size, 64);
uint64_t load_length = load_size * sizeof(Elf64_Rela);
ret = ckb_load_cell_data((void *)relocations, &load_length,
current_offset, index, CKB_SOURCE_CELL_DEP);
if (ret != CKB_SUCCESS) {
return ret;
}
if (load_length < load_size * sizeof(Elf64_Rela)) {
return ERROR_INVALID_ELF;
}
relocation_size -= load_size;
current_offset += load_size * sizeof(Elf64_Rela);
for (size_t j = 0; j < load_size; j++) {
Elf64_Rela *r = &relocations[j];
uint32_t t = (uint32_t)r->r_info;
if (t != R_RISCV_RELATIVE && t != R_RISCV_JUMP_SLOT) {
/*
* Only relative and jump slot relocations are supported now,
* we might add more later.
*/
return ERROR_INVALID_ELF;
}
if (r->r_offset >= (aligned_size - sizeof(uint64_t)) ||
r->r_addend >= (int64_t)(aligned_size) || r->r_addend < 0) {
return ERROR_INVALID_ELF;
}
uint64_t temp = (uint64_t)(aligned_addr + r->r_addend);
memcpy(aligned_addr + r->r_offset, &temp, sizeof(uint64_t));
}
}
} else if (sh->sh_type == SHT_DYNSYM) {
/* We assume one ELF file only has one DYNSYM section now */
if (sh->sh_entsize != sizeof(Elf64_Sym)) {
return ERROR_INVALID_ELF;
}
uint8_t *addr2 =
addr_offset_checked(aligned_addr, aligned_size, sh->sh_addr);
if (addr2 == 0) {
return ERROR_INVALID_ELF;
}
context->dynsyms = (Elf64_Sym *)addr2;
context->dynsym_size = sh->sh_size / sh->sh_entsize;
uint8_t *addr3 = addr_offset_with_context(addr2, sh->sh_size, context);
if (addr3 == 0) {
return ERROR_INVALID_ELF;
}
} else if (sh->sh_type == SHT_STRTAB) {
static char DYNSTR[] = ".dynstr";
if (sh->sh_name < (4096 - sizeof(DYNSTR)) &&
shshrtab->sh_size >= sizeof(DYNSTR) &&
sh->sh_name < (shshrtab->sh_size - sizeof(DYNSTR))) {
const char *current_str = shrtab + sh->sh_name;
if (strcmp(DYNSTR, current_str) == 0) {
const uint8_t *addr2 =
addr_offset_checked(aligned_addr, aligned_size, sh->sh_addr);
if (addr2 == 0) {
return ERROR_INVALID_ELF;
}
context->dynstr = (const char *)addr2;
}
}
}
}
if (context->dynsyms == NULL || context->dynstr == NULL) {
return ERROR_INVALID_ELF;
}
*handle = (void *)context;
*consumed_size = max_consumed_size + RISCV_PGSIZE;
return CKB_SUCCESS;
}
void *ckb_dlsym(void *handle, const char *symbol) {
if (handle == NULL || symbol == NULL) {
return NULL;
}
CkbDlfcnContext *context = (CkbDlfcnContext *)handle;
if (context->base_addr == NULL || context->size == 0 ||
context->dynstr == NULL || context->dynsym_size == 0 ||
context->dynsyms == NULL) {
return NULL;
}
if (!check_in_range(context->dynstr, context)) {
return NULL;
}
uint64_t _end = 0;
if (__builtin_uaddl_overflow((uint64_t)context->base_addr, context->size,
&_end)) {
return NULL;
}
for (uint64_t i = 0; i < context->dynsym_size; i++) {
Elf64_Sym *sym = &context->dynsyms[i];
const char *str =
addr_offset_with_context(context->dynstr, sym->st_name, context);
const void *str_end =
addr_offset_with_context(str, strlen(symbol), context);
if ((str == 0) || (str_end == 0)) return NULL;
if (strcmp(str, symbol) == 0) {
void *p =
addr_offset_with_context(context->base_addr, sym->st_value, context);
if (p == 0) {
return 0;
} else {
return p;
}
}
}
return NULL;
}
#endif /* CKB_STDLIB_NO_SYSCALL_IMPL */
#endif /* CKB_C_STDLIB_CKB_DLFCN_H_ */