-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
137 lines (105 loc) · 6.45 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>MIT 6.S918 - Optical Computing</title>
<link rel="stylesheet" href="dist/main.css">
<script src="dist/main.js"></script>
<script async defer src="https://buttons.github.io/buttons.js"></script>
</head>
<header>
<ul>
<span class="leftlink"><a href="">MIT 6.S918 - Optical Computing in the Era of AI</a></span>
<span class="rightlink"><a href="#syllabus_sec">Syllabus</a> | <a href="#materials_sec">Course Materials</a>
</span>
</ul>
</header>
<br />
<br />
<div>
<div class="outercontainer">
<div class="container body">
<div class="content heading anchor" id="home">
<h1>Welcome to MIT 6.S918: Optical Computing in the Era of AI</h1>
<h3>Overview</h3>
We live in an age of big machine learning models, where modern deep neural networks comprise hundreds of
billions of parameters. As these models continue to scale, the ever-growing requirements on energy
efficiency and computation speed have sparked a new industry in designing specialized computing hardware
optimized for neural networks.
<br>In this constantly evolving landscape of technology, light-based computing, commonly referred to as
"optical" or "photonic" computing, is a revolutionary paradigm shift promising higher computing
frequency and less energy consumption than traditional digital computing. This course aims to introduce
students to this exciting and rapidly growing field, focusing particularly on:
<br>
<br>1. How can light be used for computing, and why should we build optical computing hardware?<br>
<br>2. What are the fundamental devices used for photonic computing?<br>
<br>3. How do these photonic devices integrate into modern computer systems for real-world computing workloads?<br>
<br>This course will integrate lectures, lab tours, demos, and a final team presentation on new research
areas in photonic computing.
<h3>Course Information</h3>
Lecture hours: Wednesday / Friday, 2:30 – 4:00 pm
<br>Location: 37-212
<br>
<br>Office hours: Wednesday / Friday 4:00 – 5:00 pm
<br>Location: 37-212
<h3>Background required</h3>
Both undergraduate and graduate students are welcome. We aim to make this course accessible to a broad
range of backgrounds. However, students should have taken at least one electromagnetism course at the
advanced undergraduate level and one course in computer architecture and systems (e.g., combinational
and pipelined arithmetic-logic units (ALU), in-order pipelined microarchitecture, etc.). Some examples
of MIT courses that would be adequate background (old course numbers in brackets) are:
<br>Electromagnetism:
<li>6.2300 [6.013] Electromagnetic Waves and Applications</li>
<li>6.S046/6.S976 Silicon Photonics</li>
<li>6.6330/6.6331 [6.602/6.621] Fundamentals of Photonics</li>
<li>6.6300 [6.630] Electromagnetic Waves</li>
<br>Computer Architecture:
<li>6.1910 [6.004] Computation Structures</li>
<li>6.5900 [6.823] Computer System Architecture</li>
<br>Students should also be familiar with the basic principles underlying deep neural networks. Courses
that cover this include 6.3900 [6.036] at the undergraduate level and 6.7900 [6.867] at the graduate
level.
<br>Other courses may also be sufficient background. If you have questions about the prerequisites,
please feel free to email the instructors.
<h3>Course Staff</h3>
<h4>instructors</h4>
<ul>
<li><a href="https://scholar.google.com/citations?user=oF8UGCkAAAAJ&hl=en">Dr. Saumil Bandyopadhyay</a>, <a href="mailto:[email protected]">[email protected]</a></li>
<li><a href="https://people.csail.mit.edu/zhizhenzhong/">Dr. Zhizhen Zhong</a>, <a href="mailto:[email protected]">[email protected]</a></li>
</ul>
<h4>Advisors</h4>
<ul>
<li><a href="https://qp.mit.edu/">Prof. Dirk Englund</a>, <a href="mailto:[email protected]">[email protected]</a></li>
<li><a href="https://ntt-research.com/phi-people/hamerly-profile/">Dr. Ryan Hamerly</a>, <a href="mailto:[email protected]">[email protected]</a></li>
</ul>
<h4>Guest Speakers</h4>
<ul>
<li><a href="https://eems.mit.edu/">Prof. Vivienne Sze</a>, <a href="mailto:[email protected]">[email protected]</a></li>
<li><a href="https://ntt-research.com/phi-people/hamerly-profile/">Dr. Ryan Hamerly</a>, <a href="mailto:[email protected]">[email protected]</a></li>
</ul>
<h3>Course Schedule (Tentative)</h3>
<h4>Week 1</h4>
<ul>
<li>Jan. 10 (Wednesday): Lec 1: Introduction to Optical AI</li>
<li>Jan. 12 (Friday): Lec 2: Silicon photonic devices principles and hardware</li>
</ul>
<h4>Week 2</h4>
<ul>
<li>Jan. 17 (Wednesday): Lec 3: Fundamentals of optical computing primitives</li>
<li>Jan. 19 (Friday): Lec 4: Benefits and constraints of photonics compared with electronics computing (guest lecture)</li>
</ul>
<h4>Week 3</h4>
<ul>
<li>Jan. 24 (Wednesday): Lec 5: Building practical computer systems using optical computing primitives</li>
<li>Jan. 26 (Friday): Lec 6: Software stacks and operating systems for emerging optical computers</li>
</ul>
<h4>Week 4</h4>
<ul>
<li>Jan. 29 (Monday): Lec 7: Recent advancements of digital hardware accelerators for AI (guest lecture)</li>
<li>Jan. 31 (Wednesday): Group project presentations</li>
</ul>
</div>
</div>
</div>
</div>
</html>