-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathinfer_model.py
executable file
·152 lines (132 loc) · 5.84 KB
/
infer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import tensorflow as tf
import numpy as np
import logging
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import json
import rnn
from reactions import QuadraticEval, ConstraintQuadraticEval, RealReaction
from logger import get_handlers
from collections import namedtuple
logging.basicConfig(level=logging.INFO, handlers=get_handlers())
logger = logging.getLogger()
class StepOptimizer:
def __init__(self, cell, func, ndim, nsteps, ckpt_path, logger, constraints):
self.logger = logger
self.cell = cell
self.func = func
self.ndim = ndim
self.nsteps = nsteps
self.ckpt_path = ckpt_path
self.constraints = constraints
self.init_state = self.cell.get_initial_state(1, tf.float32)
self.results = self.build_graph()
self.saver = tf.train.Saver(tf.global_variables())
def get_state_shapes(self):
return [(s[0].get_shape().as_list(), s[1].get_shape().as_list())
for s in self.init_state]
def step(self, sess, x, y, state):
feed_dict = {'input_x:0':x, 'input_y:0':y}
for i in range(len(self.init_state)):
feed_dict['state_l{0}_c:0'.format(i)] = state[i][0]
feed_dict['state_l{0}_h:0'.format(i)] = state[i][1]
new_x, new_state = sess.run(self.results, feed_dict=feed_dict)
return new_x, new_state
def build_graph(self):
x = tf.placeholder(tf.float32, shape=[1, self.ndim], name='input_x')
y = tf.placeholder(tf.float32, shape=[1, 1], name='input_y')
state = []
for i in range(len(self.init_state)):
state.append((tf.placeholder(
tf.float32, shape=self.init_state[i][0].get_shape(),
name='state_l{0}_c'.format(i)),
tf.placeholder(
tf.float32, shape=self.init_state[i][1].get_shape(),
name='state_l{0}_h'.format(i))))
with tf.name_scope('opt_cell'):
new_x, new_state = self.cell(x, y, state)
if self.constraints:
new_x = tf.clip_by_value(new_x, 0.01, 0.99)
return new_x, new_state
def load(self, sess, ckpt_path):
ckpt = tf.train.get_checkpoint_state(ckpt_path)
if ckpt and ckpt.model_checkpoint_path:
logger.info('Reading model parameters from {}.'.format(
ckpt.model_checkpoint_path))
self.saver.restore(sess, ckpt.model_checkpoint_path)
else:
raise FileNotFoundError('No checkpoint available')
def get_init(self):
x = np.random.normal(loc=0.5, scale=0.2, size=(1, 3))
x = np.maximum(np.minimum(x, 0.9), 0.1)
y = np.array(self.func(x)).reshape(1, 1)
init_state = [(np.zeros(s[0]), np.zeros(s[1]))
for s in self.get_state_shapes()]
return x, y, init_state
def run(self):
with tf.Session() as sess:
self.load(sess, self.ckpt_path)
x, y, state = self.get_init()
x_array = np.zeros((self.nsteps + 1, self.ndim))
y_array = np.zeros((self.nsteps + 1, 1))
x_array[0, :] = x
y_array[0] = y
for i in range(self.nsteps):
x, state = self.step(sess, x, y, state)
y = np.array(self.func(x)).reshape(1, 1)
x_array[i+1, :] = x
y_array[i+1] = y
return x_array, y_array
def main():
config_file = open('./config.json')
config = json.load(config_file,
object_hook=lambda d:namedtuple('x', d.keys())(*d.values()))
if config.opt_direction is 'max':
problem_type = 'concave'
else:
problem_type = 'convex'
if config.constraints:
func = ConstraintQuadraticEval(num_dim=config.num_params,
random=config.instrument_error,
ptype=problem_type)
else:
func = QuadraticEval(num_dim=config.num_params,
random=config.instrument_error,
ptype=problem_type)
if config.policy == 'srnn':
cell = rnn.StochasticRNNCell(cell=rnn.LSTM,
kwargs=
{'hidden_size':config.hidden_size,
'use_batch_norm_h':config.batch_norm,
'use_batch_norm_x':config.batch_norm,
'use_batch_norm_c':config.batch_norm,},
nlayers=config.num_layers,
reuse=config.reuse)
if config.policy == 'rnn':
cell = rnn.MultiInputRNNCell(cell=rnn.LSTM,
kwargs=
{'hidden_size':config.hidden_size,
'use_batch_norm_h':config.batch_norm,
'use_batch_norm_x':config.batch_norm,
'use_batch_norm_c':config.batch_norm,},
nlayers=config.num_layers,
reuse=config.reuse)
optimizer = StepOptimizer(cell=cell, func=func, ndim=config.num_params,
nsteps=config.num_steps,
ckpt_path=config.save_path, logger=logger,
constraints=config.constraints)
x_array, y_array = optimizer.run()
# np.savetxt('./scratch/nn_y.csv', y_array, delimiter=',')
# np.save('./scratch/nn_x.npy', y_array)
plt.figure(1)
plt.plot(y_array)
plt.show()
fig2 = plt.figure(2)
ax2 = fig2.add_subplot(111, projection='3d')
ax2.plot(x_array[:, 0], x_array[:, 1], x_array[:, 2])
fig2.show()
plt.show()
if __name__ == '__main__':
main()