forked from gengshan-y/rigidmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
507 lines (469 loc) · 25.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
import collections
import cv2
import numpy as np
import os
import pdb
import random
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import GradScaler
torch.backends.cudnn.benchmark=True
autocast = torch.cuda.amp.autocast
from utils.flowlib import flow_to_image
from utils.io import add_image
from models import *
from utils.multiscaleloss import realEPE
parser = argparse.ArgumentParser(description='VCNPlus')
parser.add_argument('--maxdisp', type=int ,default=256,
help='maxium disparity, out of range pixels will be masked out. Only affect the coarsest cost volume size (default 256)')
parser.add_argument('--fac', type=float ,default=1,
help='controls the shape of search grid. Only affect the coarsest cost volume size (default 1)')
parser.add_argument('--logname', default='exp-1',
help='name of the log file (default exp-1)')
parser.add_argument('--database',
help='path to the database (required)')
parser.add_argument('--loadmodel', default=None,
help='path of the pre-trained model (default None)')
parser.add_argument('--loadflow', default=None,
help='path of the pre-trained flow model (default None)')
parser.add_argument('--savemodel',
help='path to save the model (required)')
parser.add_argument('--retrain', default='true',
help='whether to reset moving mean / other hyperparameters (default true)')
parser.add_argument('--stage', default='expansion',
help='one of {chairs, things, 2015train, 2015trainval, sinteltrain, sinteltrainval, expansion, expansion2015train, expansion2015tv} (deafult expansion)')
parser.add_argument('--nproc', type=int, default=1,
help='number of process to use (default 1)')
parser.add_argument('--ngpus', type=int, default=1,
help='(deprecated) number of gpus to use before ddp (default 1)')
parser.add_argument('--itersave', default='./',
help='a dir to save iteration counts (default ./)')
parser.add_argument('--niter', type=int ,default=300000,
help='maximum iteration (default 300k)')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
# distributed dataparallel
torch.cuda.set_device(args.local_rank)
world_size = args.nproc
torch.distributed.init_process_group(
'nccl',
init_method='env://',
world_size=world_size,
rank=args.local_rank,
)
# fix random seed
torch.manual_seed(1)
def _init_fn(worker_id):
np.random.seed()
random.seed()
torch.manual_seed(8) # do it again
torch.cuda.manual_seed(1)
## set hyperparameters for training
ngpus = args.ngpus
worker_mul = int(1)
if 'expansion' in args.stage:
datashape = [320,640]
batch_size = 6*ngpus
elif 'seg' in args.stage:
datashape = [320,640]
batch_size = 6*ngpus
elif args.stage == 'chairs' or args.stage == 'things':
datashape = [320,448]
batch_size = 4*ngpus
elif '2015' in args.stage:
datashape = [256,768]
batch_size = 4*ngpus
elif 'sintel' in args.stage:
datashape = [320,576]
batch_size = 4*ngpus
elif args.stage == 'rob':
datashape = [320,640]
batch_size = 3*ngpus
else:
print('error')
exit(0)
## dataloader
## expansion datasets
if 'expansion' in args.stage:
from dataloader import exploader as dd
if '2015' in args.stage:
if 'train' in args.stage:
from dataloader import kitti15list_train as lk15
elif 'tv' in args.stage:
from dataloader import kitti15list as lk15
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
disp0 = [i.replace('flow_occ','disp_occ_0') for i in flowl0]
disp1 = [i.replace('flow_occ','disp_occ_1') for i in flowl0]
calib = [i.replace('flow_occ','calib')[:-7]+'.txt' for i in flowl0]
loader_kitti15_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0,prob=0.5,disp0=disp0, disp1=disp1, calib=calib)
else:
from dataloader import sceneflowlist as lsf
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Driving/'%args.database, level=6)
loader_driving_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Monkaa/'%args.database, level=4)
loader_monkaa_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('/ssd1/gengshay/FlyingThings3D/', level=6)
loader_things_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
# kitti
from dataloader import kitti15list_train as lk15
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
disp0 = [i.replace('flow_occ','disp_occ_0') for i in flowl0]
disp1 = [i.replace('flow_occ','disp_occ_1') for i in flowl0]
calib = [i.replace('flow_occ','calib')[:-7]+'.txt' for i in flowl0]
loader_kitti15_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0,prob=0.5,disp0=disp0, disp1=disp1, calib=calib)
# sintel
from dataloader import sintellist_train as ls
iml0, iml1, flowl0 = ls.dataloader('%s/rob_flow/training/'%args.database)
disp0 = []; disp1 = []; calib = []
for impath in iml0:
passname = impath.split('/')[-1].split('_')[-4]
seqname1 = impath.split('/')[-1].split('_')[-3]
seqname2 = impath.split('/')[-1].split('_')[-2]
framename = int(impath.split('/')[-1].split('_')[-1].split('.')[0])
disp0.append('%s/Sintel/disparities/%s_%s/frame_%04d.png'%(impath.rsplit('/',2)[0], seqname1, seqname2,framename+1))
disp1.append('%s/Sintel/disparities/%s_%s/frame_%04d.png'%(impath.rsplit('/',2)[0], seqname1, seqname2,framename+2))
calib.append('%s/Sintel/camdata_left/%s_%s/frame_%04d.cam'%(impath.rsplit('/',2)[0], seqname1,seqname2,framename+1))
loader_sintel_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1, noise=0, disp0=disp0, disp1=disp1, calib=calib)
elif 'seg' in args.stage:
from dataloader import exploader as dd
from dataloader import sceneflowlist as lsf
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Driving/'%args.database, level=6)
loader_driving_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Monkaa/'%args.database, level=4)
loader_monkaa_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/FlyingThings3D/', level=6)
loader_things_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, disp0=disp0,disp1=dispc,calib=calib)
# kitti
from dataloader import kitti15list as lk15
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
disp0 = [i.replace('flow_occ','disp_occ_0') for i in flowl0]
disp1 = [i.replace('flow_occ','disp_occ_1') for i in flowl0]
calib = [i.replace('flow_occ','calib')[:-7]+'.txt' for i in flowl0]
# dense disp
disp0 = [i.replace('disp_occ_0','disp_occ_0_ganet') for i in disp0]
loader_kitti15_sc = dd.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0,prob=0.5,disp0=disp0, disp1=disp1, calib=calib)
else: # flow
from dataloader import robloader as dr
if args.stage == 'chairs' or 'sintel' in args.stage or args.stage=='rob':
# flying chairs
from dataloader import chairslist as lc
iml0, iml1, flowl0 = lc.dataloader('%s/FlyingChairs_release/data/'%args.database)
with open('misc/order.txt','r') as f:
order = [int(i) for i in f.readline().split(' ')]
with open('misc/FlyingChairs_train_val.txt', 'r') as f:
split = [int(i) for i in f.readlines()]
iml0 = [iml0[i] for i in order if split[i]==1]
iml1 = [iml1[i] for i in order if split[i]==1]
flowl0 = [flowl0[i] for i in order if split[i]==1]
loader_chairs = dr.myImageFloder(iml0,iml1,flowl0, shape = datashape)
if args.stage == 'things' or 'sintel' in args.stage or args.stage=='rob':
# flything things
from dataloader import thingslist as lt
iml0, iml1, flowl0 = lt.dataloader('/ssd0/gengshay/FlyingThings3D_subset/train/')
loader_things = dr.myImageFloder(iml0,iml1,flowl0,shape = datashape,scale=1, order=1)
# fine-tuning datasets
if args.stage == '2015train' or args.stage=='rob':
from dataloader import kitti15list_train as lk15
else:
from dataloader import kitti15list as lk15
if args.stage == 'sinteltrain' or args.stage=='rob':
from dataloader import sintellist_train as ls
else:
from dataloader import sintellist as ls
from dataloader import kitti12list as lk12
from dataloader import hd1klist_train as lh
if 'sintel' in args.stage:
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
loader_kitti15 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, noise=0) # SINTEL
iml0, iml1, flowl0 = lh.dataloader('%s/rob_flow/training/'%args.database)
loader_hd1k = dr.myImageFloder(iml0,iml1,flowl0,shape=datashape, scale=0.5,order=0, noise=0)
iml0, iml1, flowl0 = ls.dataloader('%s/rob_flow/training/'%args.database)
loader_sintel = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1, noise=0)
#loader_sintel = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1, noise=0, scale_aug=[0.2,0.])
if '2015' in args.stage:
iml0, iml1, flowl0 = lk12.dataloader('%s/data_stereo_flow/training/'%args.database)
#loader_kitti12 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5, scale_aug=[0.2,0.])
loader_kitti12 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5)
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
#loader_kitti15 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5, scale_aug=[0.2,0.]) # KITTI
loader_kitti15 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5) # KITTI
if args.stage=='rob':
#from dataloader import kitti15list as lk15
#from dataloader import sintellist as ls
#from dataloader import viperlist as lv
from dataloader import kitti15list_train as lk15
from dataloader import sintellist_train as ls
from dataloader import viperlist_train as lv
from dataloader import hd1klist as lh
iml0, iml1, flowl0 = lk12.dataloader('%s/data_stereo_flow/training/'%args.database)
loader_kitti12 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5)
iml0, iml1, flowl0 = lk15.dataloader('%s/kitti_scene/training/'%args.database)
loader_kitti15 = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=0, prob=0.5) # KITTI
iml0, iml1, flowl0 = lh.dataloader('%s/rob_flow/training/'%args.database)
loader_hd1k = dr.myImageFloder(iml0,iml1,flowl0,shape=datashape, scale=0.5,order=1, noise=0)
iml0, iml1, flowl0 = ls.dataloader('%s/rob_flow/training/'%args.database)
loader_sintel = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1, noise=0)
from dataloader import sceneflowlist as lsf
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Driving/'%args.database, level=6)
loader_driving = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1)
iml0, iml1, flowl0, disp0, dispc, calib = lsf.dataloader('%s/Monkaa/'%args.database, level=4)
loader_monkaa = dr.myImageFloder(iml0,iml1,flowl0, shape=datashape, scale=1, order=1)
iml0, iml1, flowl0 = lv.dataloader('%s/rob_flow/training/'%args.database)
loader_viper = dr.myImageFloder(iml0,iml1,flowl0, shape = datashape, scale=1, order=1, scale_aug=[0.8,-0.2])
## aggregate datasets
if 'expansion' in args.stage:
if '2015' in args.stage:
data_inuse = torch.utils.data.ConcatDataset([loader_kitti15_sc]*10000)
else:
#data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_monkaa_sc]*100+[loader_things_sc]*40 + [loader_kitti15_sc]*22000 + [loader_sintel_sc]*2200)
#data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_monkaa_sc]*100+[loader_things_sc]*40 + [loader_gtav_sc]*700) # no kitti sintel
data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_monkaa_sc]*100+[loader_things_sc]*40) # no kitti sintel
for i in data_inuse.datasets:
i.black = False
i.cover = True
baselr = 1e-3
num_steps = 7e4
elif 'seg' in args.stage:
if args.stage=='segsf':
#data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_things_sc]*40)
data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_monkaa_sc]*100+[loader_things_sc]*40)
elif args.stage=='segkitti':
#data_inuse = torch.utils.data.ConcatDataset([loader_kitti15_sc]*22000)
#data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_things_sc]*40 + [loader_kitti15_sc]*22000)
data_inuse = torch.utils.data.ConcatDataset([loader_driving_sc]*200+[loader_monkaa_sc]*100+[loader_things_sc]*40 + [loader_kitti15_sc]*22000)
for i in data_inuse.datasets:
i.black = False
i.cover = True
baselr=5e-4
num_steps = 7e4
elif args.stage=='chairs':
data_inuse = torch.utils.data.ConcatDataset([loader_chairs]*100)
baselr = 1e-3
num_steps = 7e4
elif args.stage=='things':
data_inuse = torch.utils.data.ConcatDataset([loader_things]*100)
baselr = 1e-3
num_steps = 7e4
elif '2015' in args.stage:
data_inuse = torch.utils.data.ConcatDataset([loader_kitti15]*50+[loader_kitti12]*50)
for i in data_inuse.datasets:
i.black = True
i.cover = True
elif 'sintel' in args.stage:
data_inuse = torch.utils.data.ConcatDataset([loader_kitti15]*200*6+[loader_hd1k]*40*6 + [loader_sintel]*150*6 + [loader_chairs]*2*6 + [loader_things]*6)
for i in data_inuse.datasets:
i.black = True
i.cover = True
baselr = 1e-4
elif args.stage=='rob':
data_inuse = torch.utils.data.ConcatDataset([loader_kitti12]*2700+[loader_kitti15]*2700 + [loader_sintel]*600 + [loader_chairs]*12 + [loader_things]*6 + [loader_hd1k]*900 + [loader_driving]*50 + [loader_monkaa]*25+[loader_viper]*70)
#data_inuse = torch.utils.data.ConcatDataset([loader_chairs]*12 + [loader_things]*6 + [loader_driving]*50 + [loader_monkaa]*25+ [loader_viper]*70) # noks
for i in data_inuse.datasets:
i.black = True
i.cover = True
baselr = 1e-3
num_steps = 7e4
else:
print('error')
exit(0)
print('Total iterations: %d'%(len(data_inuse)//batch_size))
print('Max iterations: %d' %(args.niter))
from models.VCNplus import VCN
model = VCN([batch_size//ngpus]+data_inuse.datasets[0].shape[::-1],
md=[int(4*(args.maxdisp/256)), 4,4,4,4], fac=args.fac, exp_unc= args.loadmodel is None or not ('kitti' in args.loadmodel))
# sync bn and dataparallel
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
device = torch.device('cuda:{}'.format(args.local_rank))
model = model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True
)
total_iters = 0
mean_L=[[0.33,0.33,0.33]]
mean_R=[[0.33,0.33,0.33]]
if args.loadmodel is not None:
pretrained_dict = torch.load(args.loadmodel,map_location='cpu')
pretrained_dict['state_dict'] = {k:v for k,v in pretrained_dict['state_dict'].items()}
#pretrained_dict['state_dict'] = {k:v for k,v in pretrained_dict['state_dict'].items() if 'fgnet' not in k and 'det' not in k}
model.load_state_dict(pretrained_dict['state_dict'],strict=False)
if args.retrain == 'true':
print('re-training')
if 'expansion' in args.stage or 'depth' in args.stage or 'seg' in args.stage:
print('resuming mean from %d'%total_iters)
mean_L=pretrained_dict['mean_L']
mean_R=pretrained_dict['mean_R']
else:
with open('%s/iter_counts-%d.txt'%(args.itersave, int(args.logname.split('-')[-1])), 'r') as f:
total_iters = int(f.readline())
print('resuming from %d'%total_iters)
mean_L=pretrained_dict['mean_L']
mean_R=pretrained_dict['mean_R']
if args.loadflow is not None:
pretrained_dict = torch.load(args.loadflow,map_location='cpu')
pretrained_dict['state_dict'] = {k:v for k,v in pretrained_dict['state_dict'].items() if 'f_modules' in k or 'p_modules' in k or 'oor_modules' in k or 'fuse_modules' in k}
model.load_state_dict(pretrained_dict['state_dict'],strict=False)
mix_precision = False
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
optimizer = optim.AdamW(model.parameters(), lr=baselr, weight_decay=0.0001, eps=1e-8)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, baselr, int(num_steps+100),
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
if args.local_rank==0: log = SummaryWriter('%s/%s'%(args.savemodel,args.logname), comment = args.logname)
scaler = GradScaler(enabled=mix_precision)
def train(imgL,imgR,flowl0,imgAux,intr, imgoL, imgoR, occp, RT01):
model.train()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
flowl0 = Variable(torch.FloatTensor(flowl0))
imgL, imgR, flowl0 = imgL.cuda(device), imgR.cuda(device), flowl0.cuda(device)
# mask: valid flow GT & within pre-defined range
mask = (flowl0[:,:,:,2] == 1) & (flowl0[:,:,:,0].abs() < args.maxdisp) & (flowl0[:,:,:,1].abs() < (args.maxdisp//args.fac))
if not imgAux is None:
imgAux = imgAux.cuda(device)
imgoL, imgoR = imgoL.float().cuda(device), imgoR.float().cuda(device)
# mask: + 0.01<depth<100, imgAux: depth, d1,d2,d2,flow3d
mask = mask & (imgAux[:,:,:,0] < 100) & (imgAux[:,:,:,0] > 0.01)
exp_flag = True
else:
exp_flag = False
if 'expansion' in args.stage:
exp_flag = 1 # expanson
elif 'seg' in args.stage:
exp_flag = 2 # segmentation
else:
exp_flag = 0 # flow
mask.detach_();
# rearrange inputs
groups = []
for i in range(ngpus):
groups.append(imgL[i*batch_size//ngpus:(i+1)*batch_size//ngpus])
groups.append(imgR[i*batch_size//ngpus:(i+1)*batch_size//ngpus])
# forward-backward
optimizer.zero_grad()
disp_input = None
#disp_input = 1./torch.clamp(imgAux[:,:,:,0],1,100)[:,np.newaxis]
with autocast(enabled=mix_precision):
output = model(torch.cat(groups,0), [flowl0,mask,imgAux,intr, imgoL, imgoR, occp, RT01, exp_flag],disp_input=disp_input)
loss = output[-3].mean()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 100.)
scaler.step(optimizer)
scheduler.step()
# for param_group in optimizer.param_groups:
# print(param_group['lr'])
scaler.update()
# loss.backward()
# #torch.nn.utils.clip_grad_norm_(model.parameters(), 100.0)
# optimizer.step()
# for debugging
if np.isnan(np.asarray(model.module.dc2_conv7.weight.max().detach().cpu())):
pdb.set_trace()
pass
vis = {}
vis['output2'] = output[0].detach().cpu().numpy()
vis['output3'] = output[1].detach().cpu().numpy()
vis['output4'] = output[2].detach().cpu().numpy()
vis['output5'] = output[3].detach().cpu().numpy()
vis['output6'] = output[4].detach().cpu().numpy()
if 'expansion' in args.stage:
vis['mid'] = output[6][0].detach().cpu().numpy()
vis['exp'] = output[7][0].detach().cpu().numpy()
elif 'seg' in args.stage:
vis['fg'] = output[6][0].detach().cpu().numpy()
vis['fg_gt'] = output[7][0].detach().cpu().numpy()
vis['gt'] = flowl0[:,:,:,:].detach().cpu().numpy()
if mask.sum():
vis['AEPE'] = realEPE(output[0].detach(), flowl0.permute(0,3,1,2).detach(),mask,sparse=False)
vis['mask'] = mask
vis['grad_norm'] = grad_norm
return loss.data,vis
# get global counts
with open('%s/iter_counts-%d.txt'%(args.itersave, int(args.logname.split('-')[-1])), 'w') as f:
f.write('%d'%total_iters)
def main():
sampler = torch.utils.data.distributed.DistributedSampler(
data_inuse,
num_replicas=args.nproc,
rank=args.local_rank,
)
TrainImgLoader = torch.utils.data.DataLoader(
data_inuse,
batch_size= batch_size, num_workers=int(worker_mul*batch_size), drop_last=True, worker_init_fn=_init_fn, pin_memory=True,sampler=sampler)
start_full_time = time.time()
global total_iters
# training loop
for batch_idx, databatch in enumerate(TrainImgLoader):
if 'expansion' in args.stage or 'seg' in args.stage:
imgL_crop, imgR_crop, flowl0,imgAux,intr, imgoL, imgoR, occp, RT01 = databatch
intr = [t.float() for t in intr]
else:
imgL_crop, imgR_crop, flowl0 = databatch
imgAux,intr, imgoL, imgoR, occp, RT01 = None,None,None,None,None,None
if total_iters < 1000 and not ('expansion' in args.stage or 'seg' in args.stage):
# subtract mean
mean_L.append( np.asarray(imgL_crop.mean(0).mean(1).mean(1)) )
mean_R.append( np.asarray(imgR_crop.mean(0).mean(1).mean(1)) )
imgL_crop -= torch.from_numpy(np.asarray(mean_L).mean(0)[np.newaxis,:,np.newaxis, np.newaxis]).float()
imgR_crop -= torch.from_numpy(np.asarray(mean_R).mean(0)[np.newaxis,:,np.newaxis, np.newaxis]).float()
start_time = time.time()
loss,vis = train(imgL_crop,imgR_crop, flowl0, imgAux,intr, imgoL, imgoR, occp, RT01)
if args.local_rank==0:
print('Iter %d training loss = %.3f , time = %.2f' %(batch_idx, loss, time.time() - start_time))
if total_iters %10 == 0:
log.add_scalar('train/loss_batch',loss, total_iters)
log.add_scalar('train/aepe_batch',vis['AEPE'], total_iters)
log.add_scalar('train/grad_norm',vis['grad_norm'], total_iters)
if total_iters %100 == 0:
#torch.cuda.empty_cache()
add_image(log,'train/left', imgL_crop[0:1],total_iters)
add_image(log,'train/right',imgR_crop[0:1],total_iters)
if len(np.asarray(vis['gt']))>0:
log.add_histogram('train/gt_hist',np.asarray(vis['gt']).reshape(-1,3)[np.asarray(vis['gt'])[:,:,:,-1].flatten().astype(bool)][:,:2], total_iters)
gu = vis['gt'][0,:,:,0]; gv = vis['gt'][0,:,:,1]
gu = gu*np.asarray(vis['mask'][0].float().cpu()); gv = gv*np.asarray(vis['mask'][0].float().cpu())
mask = vis['mask'][0].float().cpu()
add_image(log,'train/gt0', flow_to_image(np.concatenate((gu[:,:,np.newaxis],gv[:,:,np.newaxis],mask[:,:,np.newaxis]),-1))[np.newaxis],total_iters)
add_image(log,'train/output2',flow_to_image(vis['output2'][0].transpose((1,2,0)))[np.newaxis],total_iters)
add_image(log,'train/output3',flow_to_image(vis['output3'][0].transpose((1,2,0)))[np.newaxis],total_iters)
add_image(log,'train/output4',flow_to_image(vis['output4'][0].transpose((1,2,0)))[np.newaxis],total_iters)
add_image(log,'train/output5',flow_to_image(vis['output5'][0].transpose((1,2,0)))[np.newaxis],total_iters)
add_image(log,'train/output6',flow_to_image(vis['output6'][0].transpose((1,2,0)))[np.newaxis],total_iters)
if 'expansion' in args.stage:
add_image(log,'train/mid_gt',(1+imgAux[:1,:,:,6]/imgAux[:1,:,:,0]).log() ,total_iters)
add_image(log,'train/mid',vis['mid'][np.newaxis],total_iters)
add_image(log,'train/exp',vis['exp'][np.newaxis],total_iters)
if 'seg' in args.stage:
add_image(log,'train/fg_gt',vis['fg_gt'][np.newaxis],total_iters)
add_image(log,'train/fg_pred',vis['fg'][np.newaxis],total_iters)
total_iters += 1
# get global counts
with open('%s/iter_counts-%d.txt'%(args.itersave,int(args.logname.split('-')[-1])), 'w') as f:
f.write('%d'%total_iters)
# torch.cuda.empty_cache()
if (total_iters + 1)%2000==0:
if args.local_rank==0:
#SAVE
savefilename = args.savemodel+'/'+args.logname+'/finetune_'+str(total_iters)+'.pth'
save_dict = model.state_dict()
save_dict = collections.OrderedDict({k:v for k,v in save_dict.items() if ('reg_modules' not in k or 'conv1' in k) and ('grid' not in k) and ('flow_reg' not in k) and ('midas' not in k) })
torch.save({
'iters': total_iters,
'state_dict': save_dict,
'mean_L': mean_L,
'mean_R': mean_R,
}, savefilename)
print('full finetune time = %.2f HR' %((time.time() - start_full_time)/3600))
if __name__ == '__main__':
main()