-
Notifications
You must be signed in to change notification settings - Fork 229
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
## Summary similar to the fuse linear CE. It handles the forward and backward pass of the final linear layer via JSD by avoiding the materialization of the large logits tensor. Since JSD is the last layer, we can compute the gradient at the forward pass. ## Testing Done Hidden size: 4096, Vocab size: 128256 ![fused_linear_jsd_memory](https://github.com/user-attachments/assets/231303d1-4734-49fb-8c69-8e60730563c2) ![fused_linear_jsd_speed](https://github.com/user-attachments/assets/d83c85ec-ab29-44e0-a3d9-ad85acf4577d) - Hardware Type: NVIDIA H100 80GB HBM3 (SXM5) - [x] run `make test` to ensure correctness - [x] run `make checkstyle` to ensure code style - [x] run `make test-convergence` to ensure convergence --------- Co-authored-by: Qingquan Song <[email protected]>
- Loading branch information
1 parent
9b10f48
commit ff6650b
Showing
11 changed files
with
792 additions
and
42 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
import torch | ||
import triton | ||
from utils import ( | ||
QUANTILES, | ||
SingleBenchmarkRunInput, | ||
SingleBenchmarkRunOutput, | ||
_test_memory, | ||
parse_benchmark_script_args, | ||
run_benchmarks, | ||
) | ||
|
||
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD | ||
|
||
|
||
class TorchJSD(torch.nn.Module): | ||
def __init__(self, beta: float = 0.5, dtype: torch.dtype = torch.float): | ||
super(TorchJSD, self).__init__() | ||
self.kl = torch.nn.KLDivLoss(reduction="batchmean", log_target=True) | ||
self.beta = beta | ||
self.dtype = dtype | ||
|
||
def forward( | ||
self, | ||
log_q: torch.tensor, # input | ||
log_p: torch.tensor, # target | ||
): | ||
log_p, log_q = log_p.to(torch.float), log_q.to(torch.float) | ||
log_p, log_q = log_p.view(-1, log_p.size(-1)), log_q.view(-1, log_q.size(-1)) | ||
m = torch.lerp(torch.exp(log_p), torch.exp(log_q), self.beta) | ||
loss = self.beta * self.kl(torch.log(m), log_p) + (1 - self.beta) * self.kl( | ||
torch.log(m), log_q | ||
) | ||
return loss.to(self.dtype) | ||
|
||
|
||
class TorchLMHeadJSD(torch.nn.Module): | ||
"""Ground truth implementation of the linear fused with torch based jsd loss. | ||
:param H: hidden size | ||
:param V: vocab size | ||
:param temperature: softmax temperature | ||
:param beta: jsd beta | ||
""" | ||
|
||
def __init__( | ||
self, | ||
H: int, | ||
V: int, | ||
dtype: torch.dtype, | ||
device: torch.device, | ||
temperature: float = 1.0, | ||
beta: float = 0.5, | ||
): | ||
super().__init__() | ||
self.student_lin = torch.nn.Linear( | ||
in_features=H, out_features=V, bias=False, dtype=dtype, device=device | ||
) | ||
self.teacher_lin = torch.nn.Linear( | ||
in_features=H, out_features=V, bias=False, dtype=dtype, device=device | ||
) | ||
self.jsd = TorchJSD(beta, dtype=dtype) | ||
self.temperature = temperature | ||
|
||
def forward(self, student_input, teacher_input): | ||
student_logits = self.student_lin(student_input) | ||
teacher_logits = self.teacher_lin(teacher_input) | ||
student_prob = torch.log_softmax(student_logits / self.temperature, dim=-1) | ||
teacher_prob = torch.log_softmax(teacher_logits / self.temperature, dim=-1) | ||
|
||
return self.jsd(student_prob, teacher_prob) | ||
|
||
|
||
class LigerLMHeadJSD(torch.nn.Module): | ||
def __init__( | ||
self, | ||
H: int, | ||
V: int, | ||
dtype: torch.dtype, | ||
device: torch.device, | ||
temperature: float = 1.0, | ||
beta: float = 0.5, | ||
): | ||
super().__init__() | ||
self.student_lin = torch.nn.Linear( | ||
in_features=H, out_features=V, bias=False, dtype=dtype, device=device | ||
) | ||
self.teacher_lin = torch.nn.Linear( | ||
in_features=H, out_features=V, bias=False, dtype=dtype, device=device | ||
) | ||
self.fused_jsd = LigerFusedLinearJSD(beta, temperature) | ||
|
||
def forward(self, student_input, teacher_input): | ||
return self.fused_jsd( | ||
student_input, | ||
self.student_lin.weight, | ||
teacher_input, | ||
self.teacher_lin.weight, | ||
) | ||
|
||
|
||
############################################################################# | ||
# Test the memory consumption of the fused linear JSD | ||
############################################################################# | ||
|
||
|
||
def bench_memory_fused_linear_jsd( | ||
input: SingleBenchmarkRunInput, | ||
) -> SingleBenchmarkRunOutput: | ||
BT = input.x | ||
H = input.extra_benchmark_config["H"] | ||
V = input.extra_benchmark_config["V"] | ||
dtype = input.extra_benchmark_config["dtype"] | ||
provider = input.kernel_provider | ||
|
||
device = "cuda" | ||
torch_lm_head_jsd = TorchLMHeadJSD(H=H, V=V, dtype=dtype, device=device).to(device) | ||
liger_lm_head_jsd = LigerLMHeadJSD(H=H, V=V, dtype=dtype, device=device).to(device) | ||
|
||
# init the linear in all FusedLinearJSDs with the same weights | ||
torch_lm_head_jsd.student_lin.weight.data = ( | ||
liger_lm_head_jsd.student_lin.weight.data | ||
) = torch.rand(V, H, device=device, dtype=dtype) | ||
torch_lm_head_jsd.teacher_lin.weight.data = ( | ||
liger_lm_head_jsd.teacher_lin.weight.data | ||
) = torch.rand(V, H, device=device, dtype=dtype) | ||
|
||
student_input = torch.rand(BT, H, requires_grad=True, dtype=dtype, device=device) | ||
teacher_input = torch.rand(BT, H, dtype=dtype, device=device) | ||
|
||
def fwd(): | ||
if provider == "liger": | ||
return liger_lm_head_jsd(student_input, teacher_input) | ||
elif provider == "torch": | ||
return torch_lm_head_jsd(student_input, teacher_input) | ||
|
||
def full(): | ||
y = fwd() | ||
y.backward() | ||
|
||
mem_50, mem_20, mem_80 = _test_memory(full, _iter=10, quantiles=QUANTILES) | ||
return SingleBenchmarkRunOutput( | ||
y_20=mem_20, | ||
y_50=mem_50, | ||
y_80=mem_80, | ||
) | ||
|
||
|
||
# ############################################################################# | ||
# # Test the speed of the fused linear JSD | ||
# ############################################################################# | ||
|
||
|
||
def bench_speed_fused_linear_jsd( | ||
input: SingleBenchmarkRunInput, | ||
) -> SingleBenchmarkRunOutput: | ||
BT = input.x | ||
H = input.extra_benchmark_config["H"] | ||
V = input.extra_benchmark_config["V"] | ||
mode = input.kernel_operation_mode | ||
|
||
dtype = input.extra_benchmark_config["dtype"] | ||
provider = input.kernel_provider | ||
|
||
device = "cuda" | ||
torch_lm_head_jsd = TorchLMHeadJSD(H=H, V=V, dtype=dtype, device=device).to(device) | ||
liger_lm_head_jsd = LigerLMHeadJSD(H=H, V=V, dtype=dtype, device=device).to(device) | ||
|
||
# init the linear in all FusedLinearJSDs with the same weights | ||
torch_lm_head_jsd.student_lin.weight.data = ( | ||
liger_lm_head_jsd.student_lin.weight.data | ||
) = torch.rand(V, H, device=device, dtype=dtype) | ||
torch_lm_head_jsd.teacher_lin.weight.data = ( | ||
liger_lm_head_jsd.teacher_lin.weight.data | ||
) = torch.rand(V, H, device=device, dtype=dtype) | ||
|
||
student_input = torch.rand(BT, H, requires_grad=True, dtype=dtype, device=device) | ||
teacher_input = torch.rand(BT, H, dtype=dtype, device=device) | ||
|
||
def fwd(): | ||
if provider == "liger": | ||
return liger_lm_head_jsd(student_input, teacher_input) | ||
elif provider == "torch": | ||
return torch_lm_head_jsd(student_input, teacher_input) | ||
|
||
if mode == "forward": | ||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
fwd, | ||
rep=100, | ||
quantiles=QUANTILES, | ||
) | ||
elif mode == "backward": | ||
y = fwd() | ||
|
||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
lambda: y.backward(retain_graph=True), | ||
grad_to_none=[ | ||
student_input, | ||
torch_lm_head_jsd.student_lin.weight, | ||
torch_lm_head_jsd.teacher_lin.weight, | ||
], | ||
rep=100, | ||
quantiles=QUANTILES, | ||
) | ||
elif mode == "full": | ||
|
||
def full(): | ||
y = fwd() | ||
y.backward() | ||
|
||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
full, | ||
rep=100, | ||
quantiles=QUANTILES, | ||
) | ||
return SingleBenchmarkRunOutput( | ||
y_20=ms_20, | ||
y_50=ms_50, | ||
y_80=ms_80, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_benchmark_script_args() | ||
|
||
common_configs = { | ||
"kernel_name": "fused_linear_jsd", | ||
"x_name": "BT", | ||
"x_label": "B x T", | ||
"x_values": [2**i for i in range(10, 14)], | ||
"kernel_providers": ["liger", "torch"], | ||
"extra_benchmark_configs": [ | ||
{"H": 4096, "V": 128256, "mode": "forward", "dtype": torch.bfloat16} | ||
], | ||
"overwrite": args.overwrite, | ||
} | ||
|
||
run_benchmarks( | ||
bench_test_fn=bench_speed_fused_linear_jsd, | ||
kernel_operation_modes=["forward", "full"], | ||
metric_name="speed", | ||
metric_unit="ms", | ||
**common_configs | ||
) | ||
run_benchmarks( | ||
bench_test_fn=bench_memory_fused_linear_jsd, | ||
kernel_operation_modes=["full"], | ||
metric_name="memory", | ||
metric_unit="MB", | ||
**common_configs | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.