-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathnon-rnn-trainer.py
145 lines (122 loc) · 6.98 KB
/
non-rnn-trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import time
from utils import logger
from policies.random_migrate_policy import RandomMigratePolicy
from policies.always_migrate_policy import AlwaysMigratePolicy
from dracm_trainer import Trainer
from environment.migration_env import EnvironmentParameters
from environment.migration_env import MigrationEnv
from environment.batch_migration_env import BatchMigrationEnv
from baselines.critic_network_baseline import CriticNetworkBaseline
from baselines.linear_baseline import LinearTimeBaseline
from baselines.rnn_critic_network_baseline import RNNCriticNetworkBaseline
from policies.rnn_policy_with_action_input import RNNPolicy
from policies.rnn_policy_with_action_input import RNNValueNet
from policies.optimal_solution import optimal_solution_for_batch_system_infos
from policies.fc_categorical_policy import FCCategoricalPolicy
from baselines.linear_baseline import LinearFeatureBaseline
from policies.fc_categorical_policy import FCCategoricalPolicyWithValue
from policies.fc_categorical_policy import FCValueNetwork
from policies.rnn_critic_network import RNNValueNetwork
from sampler.migration_sampler import MigrationSamplerProcess
from sampler.migration_sampler import MigrationSampler
from algorithms.dracm import DRACM
import tensorflow as tf
logger.configure(dir="./log/pomdp-with-fc-linear-baseline-ppo-results-with-optimal", format_strs=['stdout', 'log', 'csv'])
server_poisson_rate = [18, 8, 17, 19, 10, 13, 19, 12 , 8 ,10, 14 , 7, 17, 8, 11, 10, 16, 16, 9, 19 ,20, 8, 15, 6,
6, 6, 17, 8, 17, 16, 15, 18, 8, 17, 5, 11, 12, 17, 10, 17, 12, 12, 9, 18, 7, 17, 9, 13,
8, 11, 12, 19, 11, 9, 5, 16, 9, 8, 10, 12, 20, 16, 8]
env_default_parameters = EnvironmentParameters(num_traces=10,
num_base_station=63, optical_fiber_trans_rate=60.0,
server_poisson_rate=server_poisson_rate, client_poisson_rate=4,
server_task_data_lower_bound=(0.5 * 1024.0 * 1024.0),
server_task_data_higher_bound=(5 * 1024.0 * 1024.0),
ratio_lower_bound=100.0,
client_task_data_lower_bound=(0.5 * 1024.0 * 1024.0),
client_task_data_higher_bound=(5 * 1024.0 * 1024.0),
ratio_higher_bound=3200.0, map_width=4500.0, map_height=3500.0,
num_horizon_servers=9, num_vertical_servers=7,
traces_file_path='./environment/default_scenario_LocationSnapshotReport.txt',
transmission_rates=[20.0, 16.0, 12.0, 8.0, 4.0],
trace_length=100,
is_full_observation=False,
is_full_action=True)
#env = BatchMigrationEnv(env_default_parameters)
env = MigrationEnv(env_default_parameters)
fc_policy = FCCategoricalPolicy(observation_dim=env._state_dim,
action_dim=env._action_dim,
fc_parameters=[128, 64, 32])
fc_critic = FCValueNetwork(observation_dim=env._state_dim,
fc_parameters=[128, 64, 32])
baseline = CriticNetworkBaseline(critic_network=fc_critic)
#baseline = LinearFeatureBaseline()
sampler = MigrationSampler(env,
policy=fc_policy,
batch_size=160,
num_environment_per_core=4,
max_path_length=100,
parallel=True,
num_process=10,
is_norm_reward=False)
sampler_process = MigrationSamplerProcess(baseline=baseline,
discount=0.99,
gae_lambda=0.95,
normalize_adv=True,
positive_adv=False)
algo = DRACM(policy = fc_policy,
value_function = fc_critic,
policy_optimizer = tf.keras.optimizers.Adam(1e-3),
value_optimizer= tf.keras.optimizers.Adam(1e-3),
is_rnn=False,
num_inner_grad_steps=24,
clip_value=0.2,
vf_coef=0.5,
max_grad_norm=0.5,
entropy_coef = 0.01)
trainer = Trainer(train_env = env,
algo=algo,
sampler = sampler,
sample_processor = sampler_process,
update_batch_size = 32,
policy = fc_policy,
n_itr = 400,
save_interval = 1)
eval_sampler_1 = MigrationSampler(env,
policy=RandomMigratePolicy(observation_dim=env._state_dim,
action_dim=env._action_dim),
batch_size=160,
num_environment_per_core=4,
max_path_length=100,
parallel=True,
num_process=5)
eval_sampler_2 = MigrationSampler(env,
policy=AlwaysMigratePolicy(env._state_dim,
action_dim=env._action_dim),
batch_size=160,
num_environment_per_core=4,
max_path_length=100,
parallel=True,
num_process=5)
baseline = LinearTimeBaseline()
eval_sample_processor = MigrationSamplerProcess(baseline=baseline,
discount=0.99,
gae_lambda=0.95,
normalize_adv=True,
positive_adv=False )
avg_random_rewards = 0.0
avg_always_migrate_rewards = 0.0
logger.log("evaluate random policy ....")
eval_paths_1 = eval_sampler_1.obtain_samples(log=False, log_prefix='')
eval_samples_1 = eval_sample_processor.process_samples(eval_paths_1)
eval_ret_1 = np.sum(eval_samples_1["un_norm_rewards"], axis=-1)
avg_random_rewards = np.mean(eval_ret_1)
logger.log("evaluate always migrate policy ....")
eval_paths_2 = eval_sampler_2.obtain_samples(log=False, log_prefix='')
eval_samples_2 = eval_sample_processor.process_samples(eval_paths_2)
eval_ret_2 = np.sum(eval_samples_2["un_norm_rewards"], axis=-1)
avg_always_migrate_rewards = np.mean(eval_ret_2)
optimal_migrate_rewards = optimal_solution_for_batch_system_infos(env, eval_samples_2["system_info"])
trainer.train(rnn_policy=False,
avg_random_rewards=avg_random_rewards,
avg_always_migrate_rewards=avg_always_migrate_rewards,
optimal_migrate_rewards = optimal_migrate_rewards)