-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yml
58 lines (54 loc) · 3.23 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Parent directories for data
DIR:
raw: data/raw # where uncompressed data is or should be downloaded
psf: data/psf # where psf for deconvolutions are
dataset: data/dataset # where data is
drawing: data/drawn_cyto # Basile 2D drawing of cytonemes for pipeline validation
output: data/output # where script outputs should be
model: data/output/model # where we save our models
graph: data/output/graph # where we save our graphes
figure: data/output/figure # where we save our figures
metrics: data/output/csv # where we output our metrics
# volumes
VOLUME:
input: data/dataset/input # where labeled X inputs are
rl_input: data/dataset/rl_input # where labeled denoised X inputs are
target: data/dataset/target # where labeled Y inputs are
soft_target: data/dataset/soft_target # where soft labeled Y inputs are
weight: data/dataset/weight # where inputs sample weights are
soft_weight: data/dataset/soft_weight # where inputs soft sample weights are
ilastik_target: data/dataset/ilastik # where we converted the target to be compatible with ilastik
unlabeled: data/dataset/unlabeled # where unlabeled inputs are
rl_unlabeled: data/dataset/rl_unlabeled # where denoised unlabeled inputs are
unlabeled_target: data/dataset/unlabeled_target # where unlabeled self generated targets are
unlabeled_soft_target: data/dataset/unlabeled_soft_target # where unlabeled self generated targets are
unlabeled_weight: data/dataset/unlabeled_weight # where unlabeled self generated weights are
unlabeled_soft_weight: data/dataset/unlabeled_soft_weight # where unlabeled self generated weights are
restore: data/output/restore # where we save the denoised volumes
ilastik: data/output/ilastik # where we save the segmented volumes via ilastik
threshold: data/output/threshold # where we save the segmented volumes via threshold
unet2d: data/output/unet2d # where we save the segmented volumes via UNet2D
unet3d: data/output/unet3d # where we save the segmented volumes via UNet3D
imagej: data/output/imagej # where we converted the predictions to be compatible with imagej
# For input preprocessing
PREPROCESS:
n_cls: 3 # number of classes
rl_iter: 25 # number of Richardson-Lucy iterations
blur: 1.5 # sigma for gaussian blur when generating soft labels
distance:
- 0.26
- 0.1201058
- 0.1201058
MODEL:
backbone: VGG16 # UNet backbone
pretrained: 1 # if encoder is pretrained on imagenet
dropout: 0.3 # dropout rate
TRAINING:
epoch: 40 # number of epoch
patience: 10 # early stop patience
validation: # volumes used for validation
- ctrl2
- slik2
evaluation: # volumes used for evaluation
- ctrl1
- slik1