forked from MorvanZhou/Tensorflow-Computer-Vision-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
000_visualization.py
105 lines (88 loc) · 2.61 KB
/
000_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import matplotlib.pyplot as plt
f = np.load('../mnist.npz')
image, label = f['x_train'][7], f['y_train'][7]
def show_conv():
filter = np.array([
[1, 1, 1],
[0, 0, 0],
[-1, -1, -1]])
plt.figure(0, figsize=(9, 5))
ax1 = plt.subplot(121)
ax1.imshow(image, cmap='gray')
plt.xticks(())
plt.yticks(())
ax2 = plt.subplot(122)
plt.ion()
texts = []
feature_map = np.zeros((26, 26))
flip_filter = np.flipud(np.fliplr(filter)) # flip both sides of the filter
for i in range(26):
for j in range(26):
if texts:
fm.remove()
for n in range(3):
for m in range(3):
if len(texts) != 9:
texts.append(ax1.text(j+m, i+n, filter[n, m], color='w', size=8, ha='center', va='center',))
else:
texts[n*3+m].set_position((j+m, i+n))
feature_map[i, j] = np.sum(flip_filter * image[i:i+3, j:j+3])
fm = ax2.imshow(feature_map, cmap='gray', vmax=255*3, vmin=-255*3)
plt.xticks(())
plt.yticks(())
plt.pause(0.001)
plt.ioff()
plt.show()
def show_result():
filters = [
np.array([
[1, 1, 1],
[0, 0, 0],
[-1, -1, -1]]),
np.array([
[-1, -1, -1],
[0, 0, 0],
[1, 1, 1]]),
np.array([
[1, 0, -1],
[1, 0, -1],
[1, 0, -1]]),
np.array([
[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]])
]
plt.figure(0)
plt.title('Original image')
plt.imshow(image, cmap='gray')
plt.xticks(())
plt.yticks(())
plt.figure(1)
for n in range(4):
feature_map = np.zeros((26, 26))
flip_filter = np.flipud(np.fliplr(filters[n]))
for i in range(26):
for j in range(26):
feature_map[i, j] = np.sum(image[i:i + 3, j:j + 3] * flip_filter)
plt.subplot(3, 4, 1 + n)
plt.title('Filter%i' % n)
plt.imshow(filters[n], cmap='gray')
plt.xticks(())
plt.yticks(())
plt.subplot(3, 4, 5 + n)
plt.title('Conv%i' % n)
plt.imshow(feature_map, cmap='gray')
plt.xticks(())
plt.yticks(())
plt.subplot(3, 4, 9 + n)
plt.title('ReLU%i' % n)
feature_map = np.maximum(0, feature_map)
plt.imshow(feature_map, cmap='gray')
plt.xticks(())
plt.yticks(())
plt.tight_layout()
plt.show()
if __name__ == "__main__":
show_conv()
show_result()