forked from MorvanZhou/Tensorflow-Computer-Vision-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
101_LeNet.py
71 lines (59 loc) · 2.72 KB
/
101_LeNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
A simple implementation of LeNet that works on MNIST dataset.
[LeNet](http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf)
Learn more, visit my tutorial site: [莫烦Python](https://morvanzhou.github.io)
Dependencies:
tensorflow=1.8.0
numpy=1.14.3
"""
import numpy as np
import tensorflow as tf
BATCH_SIZE = 64
LR = 0.001 # learning rate
# process mnist data
f = np.load('../mnist.npz')
train_x, train_y = f['x_train'], f['y_train']
test_x, test_y = f['x_test'][:2000], f['y_test'][:2000]
train_dataset = tf.data.Dataset.from_tensor_slices(
(train_x, train_y)).shuffle(1000).repeat(5).batch(BATCH_SIZE)
iterator = train_dataset.make_initializable_iterator()
next_batch = iterator.get_next()
tf_x = tf.placeholder(tf.float32, [None, 28, 28], name='x')/255.*2.-1. # normalize to (-1, 1)
image = tf.reshape(tf_x, [-1, 28, 28, 1], name='img_x') # (batch, height, width, channel)
tf_y = tf.placeholder(tf.int32, [None, ], name='y') # input y
# network structure
with tf.variable_scope('LeNet'):
net = tf.layers.conv2d( # [batch, 28, 28, 1]
inputs=image,
filters=6,
kernel_size=5,
strides=1,
padding='same',
name="conv1") # -> [batch, 28, 28, 6]
net = tf.layers.max_pooling2d(
inputs=net,
pool_size=2,
strides=2,
name="maxpool1") # -> [batch, 14, 14, 6]
net = tf.layers.conv2d(net, 16, 5, 1, padding="same", name="conv2") # -> [batch, 14, 14, 16]
net = tf.layers.max_pooling2d(net, 2, 2, name="maxpool2") # -> [batch, 7, 7, 16]
net = tf.layers.flatten(net, name='flat') # -> [batch, 7*7*16=784]
logits = tf.layers.dense(net, 10, name='fc4') # -> [batch, n_classes]
loss = tf.losses.sparse_softmax_cross_entropy(labels=tf_y, logits=logits) # compute cost
train_op = tf.train.AdamOptimizer(LR).minimize(loss)
accuracy = tf.metrics.accuracy( # return (acc, update_op), and create 2 local variables
labels=tf_y, predictions=tf.argmax(logits, axis=1),)[1]
sess = tf.Session()
sess.run(tf.group( # initialize var in graph
tf.global_variables_initializer(),
tf.local_variables_initializer(),
iterator.initializer)
) # the local var is for accuracy_op
writer = tf.summary.FileWriter('./log', sess.graph) # write to file
# training
for step in range(3000):
b_x, b_y = sess.run(next_batch)
_, loss_ = sess.run([train_op, loss], {tf_x: b_x, tf_y: b_y})
if step % 50 == 0:
accuracy_ = sess.run(accuracy, {tf_x: test_x, tf_y: test_y})
print('Step:', step, '| train loss: %.4f' % loss_, '| test accuracy: %.2f' % accuracy_)