Hongzun Liu, Xuetong Wang, Jie Wu
You may need a conda environment and CUDA on your machine. About 40GB GPU memory is required.
pip install -r requirements.txt
You may just use default options.
python main.py --expname bert-nofold-exp1 --backbone bert-base-uncased --epoch 8 --train_bsz 32 --gradient_accumulation_steps 2 --eval_bsz 64 --kfold 1
You may use --prompt
option.
python main.py --expname deberta-nofold-prompt-exp1 --prompt --backbone microsoft/deberta-v3-base --epoch 8 --train_bsz 32 --gradient_accumulation_steps 2 --eval_bsz 64 --kfold 1
You may use --kfold {K}
option.
python main.py --expname deberta-nofold-prompt-exp1 --prompt --backbone microsoft/deberta-v3-base --epoch 8 --train_bsz 32 --gradient_accumulation_steps 2 --eval_bsz 64 --kfold 10
You may use --test_only
option.
python main.py --expname deberta-nofold-prompt-exp1-testonly --prompt --backbone microsoft/deberta-v3-base --epoch 8 --train_bsz 32 --gradient_accumulation_steps 2 --eval_bsz 64 --kfold 1 --test_only
TextRNN
python main.py --expname textrnn-nofold-exp1 --backbone textrnn --epoch 15 --train_bsz 64 --eval_bsz 128 --kfold 1 --backbone_lr 5e-4
TextCNN
python main.py --expname textcnn-nofold-exp1 --backbone textcnn --epoch 15 --train_bsz 64 --eval_bsz 128 --kfold 1 --backbone_lr 5e-4
All of our experiments can be reproduced using scripts in train_all.sh
CUDA_VISIBLE_DEVICES="0" sh ./train_all.sh