-
Notifications
You must be signed in to change notification settings - Fork 0
/
Examples of usage.nb
3709 lines (3662 loc) · 164 KB
/
Examples of usage.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 167488, 3701]
NotebookOptionsPosition[ 164487, 3645]
NotebookOutlinePosition[ 164828, 3660]
CellTagsIndexPosition[ 164785, 3657]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"$PlotTheme", "\[Rule]", "\"\<Scientific\>\""}]], "Input",
CellChangeTimes->{{3.748962948035715*^9, 3.748962953315017*^9}, {
3.7489632095726743`*^9, 3.7489632351061344`*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"398344af-74ab-476c-bbf7-08cb6e1654c8"],
Cell[BoxData[
RowBox[{"Automatic", "\[Rule]", "\<\"Scientific\"\>"}]], "Output",
CellChangeTimes->{3.7489632365722184`*^9},
CellLabel->"Out[27]=",ExpressionUUID->"b50f2d6f-df26-43c5-b42f-9cd179f89b3a"]
}, Open ]],
Cell["First initialize parameters. ", "Text",
CellChangeTimes->{{3.7489640740084677`*^9,
3.7489641121811705`*^9}},ExpressionUUID->"7fc14082-63fb-4439-aad2-\
4466c1a7664d"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"timeconstant", "=",
RowBox[{"R", "=", "4"}]}], ";"}], " "}], "\n",
RowBox[{
RowBox[{"threshold", "=", "10"}], ";", " ",
RowBox[{"(*",
RowBox[{"Experimentally", " ", "calculated"}], "*)"}], "\n",
RowBox[{"T", "=", "10"}], ";"}]}], "Code",
CellChangeTimes->{{3.728822506533186*^9, 3.7288225070253882`*^9}, {
3.732978240106537*^9, 3.7329782704582567`*^9}, {3.7332465501728477`*^9,
3.733246551259014*^9}, {3.748899563782324*^9, 3.7488995745053425`*^9}, {
3.748899656794527*^9, 3.7488996708265514`*^9}, {3.748900121008682*^9,
3.748900126524706*^9}, {3.7489641143417764`*^9,
3.7489641220959945`*^9}},ExpressionUUID->"d40e8b16-38ab-40be-bbcb-\
78cb22c88e39"],
Cell[CellGroupData[{
Cell["Learning to simulate neural network", "Section",
CellChangeTimes->{{3.748963948294899*^9,
3.7489639571185184`*^9}},ExpressionUUID->"02024acc-9a00-48fd-b468-\
77099e0862a7"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"net", ",", "indexST", ",", " ", "voltageFunctions", ",", " ",
"TableST"}], "}"}], "=",
RowBox[{"netSim", "[",
RowBox[{"1", ",", "1", ",", "10", ",",
RowBox[{"{", "6", "}"}], ",", "0"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.7489628821409464`*^9, 3.74896289042742*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"9ec0296c-a62d-4406-8a89-d9d291492c1c"],
Cell[CellGroupData[{
Cell[BoxData["net"], "Input",
CellChangeTimes->{{3.748962894041627*^9, 3.748962894218637*^9}},
CellLabel->"In[65]:=",ExpressionUUID->"ff3822cc-37e8-4ba8-bbd8-d611119fdf4a"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1}, {}, {
GraphLayout -> {"Dimension" -> 2}, VertexLabels -> {"Name"}}]]},
TagBox[GraphicsGroupBox[{{},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{0., 0.}, 0.004014598540145964],
InsetBox["1",
Offset[{2, 2}, {0.004014598540145964, 0.004014598540145964}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->{133., Automatic},
PlotRangePadding->0.1]], "Output",
CellChangeTimes->{
3.748962895273697*^9, {3.7489632135078993`*^9, 3.7489632402294273`*^9},
3.748964255351903*^9},
CellLabel->"Out[65]=",ExpressionUUID->"b9f22f88-26be-4cac-a86e-8bd97f379a1c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"u", "[", "t", "]"}], "/.", "voltageFunctions"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1.2", ",", "10"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"u", "[", "t", "]"}]}], "}"}]}], " ", ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7489629228582754`*^9, 3.7489629257094383`*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"70c90145-2e7a-4261-a174-e2804be86342"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.9, 0.36, 0.054], AbsoluteThickness[1.6], Opacity[1.],
CapForm["Butt"], LineBox[CompressedData["
1:eJwVl3k0ldsbx89xo5TpmDqD4ZzzohKlNEiyv0pkTEoqKimllKLQgGguIikK
V+cWmpApY3VlVkkidYkIkUg5lBR+7++Pd+31rL3W3utd6/k8n+8WuO939JBg
MBg/6O//64I7ntsNDcXEvdYwMb6djSSz6d5mpmLilfNge0c/GyrN5YdXW4mJ
p5HR1FmjbPyQpSK8topJYXLH7zRFDgoOtuTfChMTm7r6Y4krODAljnLKnWIy
f1Us4SZzYNW4tGDoyhCRi7nufnwnF1smycvn/hgmgQUS/sodPESNdFUXDY8Q
3n9l868yNHE+/MCS/qe/yaTD6/4TdvIxWemkjmLIOPGUfptmNF+IE5qHKkbC
xkn0hH5/yWIh/sz22PkhdpwEjvVq2S4T4pu5ZUrqg3FivNgt2GWVEO/8p+lY
fhgn+pl5rfu2CHGnKVo70HSCMJ5zQ7ddEML6ZpLWpz8T5BbfPuF0uxDub63d
d05i4OcyXcuBT0KINq/I2jiVgeM6vt+c+4Tg7lngCFUGuEckiM5PIeROql6W
ncMAe9KaulwZCj9ymlh3NjPQlTZp6PZiCpXs7ayWRwysWvQk8Hk4BXOp8vw9
JQz43vSZKIyiUCzWcRupZEDaZiDlbgyFwpe96Ur1DDyT6dhxSkQh9ZSvrfVn
BiJ82kRzcyjM9G0Qv/3KgKCNY88uoJC8dVG8xxAD2cw1AsYTConGo59DJhhQ
5zga11RSuPQt9GyeChMTefXGm5spyLR2zFnJY+JUyxw10kbh/POVja/5TMTp
FWnxuyhIFdwOctNhQlH5xjpGL4UTKdLaX2cz8ViCmfrhK4WJaK8Xx+YxsX/X
5NlPxBQCQ2sOSi9m4lfGu7r4EQoj3nN5sSZM6NvHiw6PUfBzjSrRWs5EfsQ7
pYHc42TQSrw7y5IJf43CsQ/R14j3YicW7JiYc8fQ5VJ8EvFU5Li5bGBCDa9C
Tf/OIpuqRGNR3ky0bfqiWXr9KWl8KJGseYiJ8bbskeT7pWTtrR22aUeYiPBy
79R7XE5sg2fGV51iYnnUwgUzPlQTsiDDaCKOCSOX6oJd8nVES/Tvwb2VTJy3
Wa0fbPEf6Q9o/WzBl8D73Rti7Ko7SVzFllgbHQkEVG9qrnTqIhYqH8wd9CTw
qdY1b8bHLiLK+nBjo5EEjNTXr7o2+ok49rc57XWQwLSCdxuX6X4m+e4dT6NC
JFBiPBERf6qfnLDruf6+TQI70lwsuxTFZDo1aOX7z1+I9w5LD734m5yqrPaM
5UlCl1++ZviVJOqX/t7mGCiFyg/PX8mOyWDGn7KPL0cnIzT7zr0NixSxObxn
WftWaZQZmnzLPKuCRpVXzv2Pp+KXs7LJrGQ21n1Z/atwiQxqImdZF7bxkHNp
lp9GgizOVPx0VyzVAPtE/OEVavI4UynvqdjGh1uup3qmtQLc9jXXRVoI8ebN
P2cO2Cmg/DZj5j0bmo/hpoG5DgrIjuj7u9RBiAUL7ErSnRQQVp/7WbxJiClZ
83aluilg0to9ktb7hchMG8247a+AIn7O/hexQkgkh5sn3lTAjiI9pdk9QgSU
ladtTlaAVJZ26qx+Ifo6xlXV7yhg0c6E3TMGhWgU+nyOT1NA/ESsI/+PEPdF
ThHX8xXworipbbIChXUJGu+uvKTvr9WST6f5So7O8AobVcD3nKA85zMUsjpG
nM+MKUAp22giKYzmy9DMPJTBgqypkfX3SxSa6uvUAqRY8JIp7T0TT0FOWVzj
rsiCzRRjl5QMCrwdSws3q7AQ3mtT8uUhzVvOyZQNbBaOBmnMMSiisHyd8nF7
DRYsKkuVc8spBFxZaGCsy4KSpxmV20ThVGeQ2kJ9FmbYhT0Uf6BweUHFFAMD
FoqlFO0NaL5unJIb1jVkwYkj2e9F85XasL5dexEL7tJXLqcMUCjQulHDX8LC
dpevpm1DFCoOdRfwTFioj14xyB6lUF82N0WVsDB7cWmqwwSFNuXDl1nLWVDI
tjMf+hpB+ncUB8usZOGrvra5yT0RGc2Z4jV5FQv3H1mUsmLvEmWn6yvG7FjY
tbLbve3hQ2J1tXCoZyMLn957PbcrLiXruyTaO1xZcH1yf1XCSDnZsdCmpnUr
Cz3J24dDDKpI8Jvm5AYPFrqnT9GTvfGCZKmMrS/2YSGG8om7XvSa8GJIQex5
ej9uxcGO882kP6YsyKKAhezWq9bJxz+RuLinV+UesVBRpb9gIbObWCQ+SWt8
wsKo/4nr6Se6iSg5v2VnGQtbM3W6N5/uIetyUpedrWVhos7kT/r5XvKo7spY
ZRcLh1xe+GhEfCUXZDyCrBQV4djtWquzQkx0TkgG2Xop4nWAPMud+5tsi1aE
oZ4SJDu+7y8ukcSyf0I/xnxWgiCs0mnkoCymxar7roxTRtXpS1JuMxXRnHW6
vGGjCtR5f3l+zFVBQi5X6oGMKorvin7s7GBjPJelI/VIFX1qLj1o5WF7S4O0
6dHpONf6IKdwWAMFX8qaimezkRm2c4G4mQ8WP3S/Vh8bmy6v0X9sJUTDtTXf
pw+wYSaKSVq8WohrLOHBaYNsrK514GSuE4L/V6n/4E82tn7s+S3aKoTBp0nB
xX9xMKQqdf+QnxAOqefCXXkcqK6f1fxFJESE0aW7V6w5mKYvKOXSPnLMdJt9
zo4DB0s3cz+aH1XdeWnHHDh48rmn6iWT9gPvdYb7eg4aXCLfB9O+ShtXyjdw
50BXaplhvYDCi7LYihdHONg1dqzC1pbCtDU3Oibd5cC2PLzy/z7yDtKKKr/P
QennmyMeyRRe371reiadg66yNkeLexTiJHKuT87hoMNj98lJ//dVTtXqqf9y
MP604p0/7aPwNruxZ085GJ1q6LzmBYVvMvX3wso4UL82OKFbRyHPo0VS9hkH
11cy65ppnriX3bNrXnDgaBX/K4vmKfhJt1tELQdiZw27850ULKYPFsm/4SDV
1c/PkPbTvRUBu1+95UC46Ir1ZNpPsgf+qEY10bmkfZ5N008KBxJCy9a0cJBZ
ezAg9Q+FhiopX8U2DrSKvba5LDxEjIbDNOs/chDYVMbRiLxKEgSsmuguDi6f
vozJk2+R7Ud5M1W+cMC/KL2yuTiTVKSI3rzp5yAkt1E2oPUh0a3XPhnzjQOL
arvQzb8LyOBsg9bpPziwvppeeJrzlIS0mF/hMrng+JRo/bStJp3Sz8ya/+JC
e1pj9/cNz8mqRasH4qW4yBnafPHyjhoiH7nRWl2GC+pcR6v741ckEd4M/nQu
/lNNzjpa10CKbsXu1dbnojHNO23F9/fkx+5ec4ONXIwcmL8q/+wnMlgR7Kfn
ysXN8gGnYsVu8pVSSpm5lYvqbyV+6X93k66WpZMFHlwMps+YMMnuIQ1rLlaz
fLiQuxhaTLX0kswlBvbic1yUdRXqq+kNkL3S/s65+fR9/O/K+5rFpOMOc48J
mwfro39krPGHPK1dGRj9jId1ficjTXIkYSb+sm/XETXUvVSWbq2TQanJFkpt
sToMTLJXmXEVsch7rJzXow6r6ZHZNz1UcL/cU+/PbQ2oGS7i3atlgyXJDJnh
oonnGfPt7jTzEC4K+m+XJB/XbgX8/J6ngai6tnWpO/hYOldkVP6Wj0j/JouY
x3yo6syXSdEVwnt4Vsb0f/n4Z75u1XIDIewPHeFcL+bDM7DNr3Uhnd982X3x
pXz8tNxwW9GM5mnf+qh/qvnIMpvp6e1M1zteN6e+4UOtoStCfJKuHZ8dKO3n
41J5au3C9/T5dZwm8wE+xEd+amfS+dHeYfeKim98DDotPzS7mz7ffopqtZiP
zosJv9Rov0VYWRS9/MXHoWX/poonU4hAiWSTpAAGcTc+7Dek6zmFcd/UBVht
9v5l0nkKu3yqxvZoCtD+5NeFTxEUkNPo1sUXwGf5WfsZVyiIl4h1migBPFvv
9yUnUtiwUi+7dJYAQWP6F2KzKcw7Z6xqOluADtPWM3X5FKY+X3UkX0+A4TCf
8Kl0Xnzs4EHS5grw8/lo1pEqCkLXxOcxCwVYFnDP17aFwu/E1DmsxQK03T1d
FPyR5qW9MCrMSIDm/ly5jG4K6VrVQ5LGAny+tXdvWx+Fs7veOocsFSBf702D
/CAFt3tdhaMmAjA/a6wypfkz7her+5kKELjkcIUXzZ+SgUToABHgvUqGTJ3I
j/T5KnTuNhMgWHGh+iJhLCl/qGHZuVyAv5P8Ww/vTSKJI3r3tpgL8M3aa8jQ
Io2sCbY6sNZSAI9UyV3bjuaR3PMn/pjYCbBcU00vOrKMRL64tDXPXgATzWXz
ZpRWEE/5GyXzHAS4OOu25tofVYR3teiczloB9oUslTzoUkNCREPKChsFSLf0
OLNHoZ5Y5+3U79ghwChJ2cN50UxaOq23nA8UoGatdqx/xCdyJtTQuTdIgH8d
uDe75LqJgYaag81xAYamrws3jewmJ5z7zWRPCBDWMyibHtlDdJ5FakedFWCL
TJfBqchesv9BQ9+1ywLcnuqyQiHsK2Ee3XLszh36/yq2jbcZiYm2vO+1ygYB
NB4/zJwzMUq8bY8v8F8gxGabIwm7kyWRMSa0fHZRiKTnqkdzemWwPC2g2rVL
CMu81gbhBxYa92elbTWnMCupMaZ+twrcU05OmfI3heO+9+wrLrMhF2TVE033
DULfB0SL2ChcK1+lSc95qcSdPzans6HIjD+7+BYF67i44d5qNkpcsqR23aWw
NqV2aheDnrOs9kkVdE7aEJHG3OTNQfsxU+aplxTeXjDIsLbkItxxUrv8K4qe
d79CStdxYTTrWXE8PeeD1d3zlrhzcanRKSS7gcLRu2xnjSAuMG/fxEd67n9N
kjlQlcWF6FP8mBndZ7FOuwNE6jzYPt7WUtNDYet66dYBXR5Gomc83kjnKLtC
ZJkY8eBglh3o00+/uzJ8k1868sBIePZbRHvgTODLsvqzPKT6XmrWG6ZzVaFy
itxVHjZYrS/K/0EhbGffiMVNHjJ+tB999Yv22jS74QePeHCtub3J9TeFvrMN
N9qqeZiStM+4h+7bIv/ex3Jv6Xx91JB7aJzCBY6cg3EnD25rfv2aoHNZSuaT
9du/8/A/WJ3NSw==
"]]},
Annotation[#, "Charting`Private`Tag$21999959#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{1.2, 0.004933697657847378},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
RowBox[{"u", "(",
TagBox["t", HoldForm], ")"}], TraditionalForm], None}, {
FormBox[
TagBox["t", HoldForm], TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->FrontEndValueCache[{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}}, {{Automatic, {{0.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {4.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {6.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {8.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {10.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-2.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-1.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-1.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-0.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {0.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {4.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {5.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {5.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {6.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {7.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {7.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {8.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {9.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {9.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {10.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {12.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}}, {Automatic, {{2.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {4.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {6.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {8.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {10.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {0.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {0.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {4.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {5.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {5.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {6.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {7.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {7.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {8.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {9.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {9.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {10.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {11.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {12.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}}}],
GridLines->{{0}, {0}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Times"},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{1.2, 10}, {0.004933697657847378, 9.998662375288026}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.74896292888962*^9, {3.748963216273058*^9, 3.7489632527091417`*^9},
3.748964257199706*^9},
CellLabel->"Out[66]=",ExpressionUUID->"283188ed-4779-4a13-8945-a5b0c21909f6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"spktrnF", "[",
RowBox[{"TableST", ",",
RowBox[{"ImageSize", "\[Rule]", "400"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"ChartStyle", "\[Rule]", "\"\<SolarColors\>\""}], ",",
RowBox[{"FrameStyle", "\[Rule]", "16"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time\>\"", ",", "\"\<Neuron\>\"", ",", "None", ",", "None"}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The firing rate of this neuron is: \>\"", " ", ",", " ",
RowBox[{"firingRate", "[",
RowBox[{"TableST", ",", "T"}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.748964240880272*^9, 3.748964603367613*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"ddf0fc5d-99b4-4a69-bb65-7e679c14bf35"],
Cell[BoxData[
GraphicsBox[{
{Opacity[0],
PointBox[{{1.8325965989161983`, -0.4999999999999999}, {8.947383394708496,
2.409090909090909}}]},
{RGBColor[0.9, 0.36, 0.054], EdgeForm[None], {},
{RGBColor[0.9, 0.36, 0.054], EdgeForm[None],
{RGBColor[1., 0.820127, 0.126955], EdgeForm[None],
TagBox[
TooltipBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
GraphicsGroupBox[{Antialiasing -> False,
LineBox[{{{2.155995998724939, 0.5}, {2.155995998724939,
1.4090909090909092`}}, {{4.311991997449878, 0.5}, {
4.311991997449878, 1.4090909090909092`}}, {{6.467987996174816,
0.5}, {6.467987996174816, 1.4090909090909092`}}, {{
8.623983994899755, 0.5}, {8.623983994899755,
1.4090909090909092`}}}], {
FaceForm[],
GrayLevel[0.65],
RectangleBox[{2.155995998724939, 0.5}, {8.623983994899755,
1.4090909090909092`}]}}]},
ImageSizeCache->{{66.5857864376269,
363.77784992600937`}, {-53.414213562373114`, 0.41421356237310647`}}],
StyleBox[
TagBox[
GridBox[{{
StyleBox["\"max\"", Bold, StripOnInput -> False],
"8.623983994899755`"}, {
StyleBox["\"75%\"", Bold, StripOnInput -> False],
"6.467987996174816`"}, {
StyleBox["\"median\"", Bold, StripOnInput -> False],
"4.311991997449878`"}, {
StyleBox["\"25%\"", Bold, StripOnInput -> False],
"2.155995998724939`"}, {
StyleBox["\"min\"", Bold, StripOnInput -> False],
"2.155995998724939`"}},
GridBoxAlignment -> {"Columns" -> {Center, ".", {Left}}},
AutoDelete -> False, GridBoxDividers -> {"Columns" -> {
Directive[
GrayLevel[0.3]], {
Directive[
GrayLevel[0.3]]},
Directive[
GrayLevel[0.3]]}, "Rows" -> {
Directive[
GrayLevel[0.3]], {
Directive[
GrayLevel[0.3]]},
Directive[
GrayLevel[0.3]]}},
GridBoxFrame -> {
"ColumnsIndexed" -> {{{1, -1}, {1, -1}} -> GrayLevel[0]}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaseStyle ->
Directive[
AbsoluteThickness[1],
Dashing[{}]]], "Grid"], {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[
Grid[{{
Style["max", Bold], 8.623983994899755}, {
Style["75%", Bold], 6.467987996174816}, {
Style["median", Bold], 4.311991997449878}, {
Style["25%", Bold], 2.155995998724939}, {
Style["min", Bold], 2.155995998724939}}, Dividers -> {{
Directive[
GrayLevel[0.3]], {
Directive[
GrayLevel[0.3]]},
Directive[
GrayLevel[0.3]]}, {
Directive[
GrayLevel[0.3]], {
Directive[
GrayLevel[0.3]]},
Directive[
GrayLevel[0.3]]}}, Alignment -> {{Center, ".", {Left}}}, Frame ->
GrayLevel[0], BaseStyle -> Directive[
AbsoluteThickness[1],
Dashing[{}]]], {FontFamily -> "Times"}],
"Tooltip"]& ]}}, {}, {}}, {{{{{{}, {}}, {}}, {}}, {}}, {}}, {}},
AspectRatio->NCache[
Rational[1, 2], 0.5],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0.5, 2.155995998724939},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{{
FormBox["\"Neuron\"", TraditionalForm], None}, {
FormBox["\"Time\"", TraditionalForm], None}},
FrameStyle->16,
FrameTicks->{{{{0.9545454545454546,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0.008, 0}}, {
0.9545454545454546,
FormBox["1", TraditionalForm], 0}, {0.5,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}, {
1.4090909090909092`,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}}, {{
0.9545454545454546,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0.008, 0}}, {0.5,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}, {
1.4090909090909092`,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}}}, {
Automatic, Automatic}},
GridLines->{{0}, {0}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->400,
LabelStyle->{FontFamily -> "Times"},
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, {{0.9545454545454546,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0.008, 0}}, {
0.9545454545454546,
FormBox["1", TraditionalForm], 0}, {0.5,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}, {
1.4090909090909092`,
FormBox[
TemplateBox[{0}, "Spacer1"], TraditionalForm], {0, 0}}}}]], "Output",
CellChangeTimes->{{3.748964472649767*^9, 3.7489645036746225`*^9}, {
3.7489645790371695`*^9, 3.748964603820013*^9}},
CellLabel->
"Out[104]=",ExpressionUUID->"afdd50f2-9926-4084-b518-35918663a9b6"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The firing rate of this neuron is: \"\>", "\[InvisibleSpace]",
RowBox[{"{",
FractionBox["2", "5"], "}"}]}],
SequenceForm["The firing rate of this neuron is: ", {
Rational[2, 5]}],
Editable->False]], "Print",
CellChangeTimes->{{3.7489645790371695`*^9, 3.7489646038356133`*^9}},
CellLabel->
"During evaluation of \
In[104]:=",ExpressionUUID->"94f89db2-1380-4fb6-88d5-ec75c422ee04"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"SeedRandom", "[", "0", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"net", ",", "indexST", ",", " ", "voltageFunctions", ",", " ",
"TableST"}], "}"}], "=",
RowBox[{"netSim", "[",
RowBox[{"3", ",", "0.5", ",", "10", ",",
RowBox[{"{",
RowBox[{"6", ",", "6", ",", "6"}], "}"}], ",", "0"}], "]"}]}],
";"}], "\[IndentingNewLine]", "net", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"u", "[", "t", "]"}], "/.",
RowBox[{
"voltageFunctions", "\[LeftDoubleBracket]", "i",
"\[RightDoubleBracket]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1.2", ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}], "//",
"TableForm"}], "\n"}], "Input",
CellChangeTimes->{{3.7489633712699227`*^9, 3.7489633712859235`*^9}, {
3.7489634163875036`*^9, 3.7489634820572596`*^9}, 3.7489635265688057`*^9, {
3.7489641925439596`*^9, 3.7489641941793633`*^9}},
CellLabel->
"In[106]:=",ExpressionUUID->"0c557880-fdea-4afc-abee-8eb32f21f3d3"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3}, {
SparseArray[
Automatic, {3, 3}, 0, {
1, {{0, 2, 4, 6}, {{2}, {3}, {1}, {3}, {1}, {2}}}, Pattern}], Null}, {
EdgeWeight -> {0.2751245915804832, -0.7978032391594181,
0.29104938764392063`, -0.6809555483796839, 0.6275757025518693,
0.8095709409028817}, GraphLayout -> {"Dimension" -> 2},
VertexLabels -> {"Name"}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[Medium],
ArrowBox[
BezierCurveBox[{{-0.8660254037844384, -0.49999999999999933`}, {
8.200629818601134*^-15, -0.2151802710442648}, {
0.8660254037844389, -0.5000000000000012}}], 0.020399597244776385`],
ArrowBox[
BezierCurveBox[{{-0.8660254037844384, -0.49999999999999933`}, \
{-0.6796738226668952, 0.3924098644779064}, {1.8369701987210297`*^-16, 1.}}],
0.020399597244776385`],
ArrowBox[BezierCurveBox[{{
0.8660254037844389, -0.5000000000000012}, {-3.13427212962242*^-15, \
-0.78481972895571}, {-0.8660254037844384, -0.49999999999999933`}}],
0.020399597244776385`],
ArrowBox[BezierCurveBox[{{0.8660254037844389, -0.5000000000000012}, {
0.18635158111754763`, 0.10759013552211703`}, {
1.8369701987210297`*^-16, 1.}}], 0.020399597244776385`],
ArrowBox[BezierCurveBox[{{1.8369701987210297`*^-16,
1.}, {-0.18635158111754363`,
0.10759013552215828`}, {-0.8660254037844384, \
-0.49999999999999933`}}], 0.020399597244776385`],
ArrowBox[BezierCurveBox[{{1.8369701987210297`*^-16, 1.}, {
0.6796738226668931, 0.3924098644778326}, {
0.8660254037844389, -0.5000000000000012}}], 0.020399597244776385`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {
DiskBox[{-0.8660254037844384, -0.49999999999999933},
0.020399597244776385],
InsetBox["1",
Offset[{2, 2}, {-0.845625806539662, -0.479600402755223}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8660254037844389, -0.5000000000000012},
0.020399597244776385],
InsetBox["2",
Offset[{2, 2}, {0.8864250010292153, -0.47960040275522486}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.8369701987210297*^-16, 1.}, 0.020399597244776385],
InsetBox["3",
Offset[{2, 2}, {0.02039959724477657, 1.0203995972447764}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellChangeTimes->{{3.748963462462139*^9, 3.748963503276473*^9},
3.748964617142437*^9},
CellLabel->
"Out[108]=",ExpressionUUID->"e317e468-ad08-4db3-9fed-bfa1b5b56968"],
Cell[BoxData[
TagBox[
TagBox[GridBox[{
{
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.9, 0.36, 0.054], AbsoluteThickness[1.6], Opacity[1.],
CapForm["Butt"], LineBox[CompressedData["
1:eJwVl3k8VP8XxocigzIMM2YMM3OvRElCQnKfSruQos2WfKOUQiut2iRJEYok
IS0kWrRaiizZWqwJKdkrW5Tld3//3Hnd15nP8jr3nPM8b7HbLrv/JBkMhhn9
+P+vUYrnFkPDPsqt3DAuplkViQu43gss+iivh/e3tHSrQqU+/4DN8j7K08RE
VuevKgYnk6FeLn3Us6SWf6lKPDz1a8i6ea6PWln5ISBuEQ8WlN0U5W99lMGy
KIqfxMPyqnlP+yP6qSmRV9yObuXDeaKCwuPBAerQU8l9yi1quDj0vej5wBCl
VvvG4DJDiLMhu027c/9REw+srSW+iTCJfUJL6dgY5cmsTjUxIBAo3FMwdG6M
Ch+f2Z03l8DIjP+2NkaNUYdGOzSt5hP4Zbk0+d79McpsruuRTcsI1OyT01ra
OEbNfPDky05nAil14VMPWYxTjBL+8c3BBFYkJGq2joxTN0XWsaeaCbhVr3Db
OpGBP/OnL/3ZSiDeaVHGBlkGjmr5/lrXRYC/3cgOHAb4ByUprT8EppzgXJqs
x4DqxNWVj+VJDD6sU0xxYuB76sT+W3NJvFXdotjwgoFlxq8OlYSQsJTOz9qe
x4Bvgs/4s4skcvq0XIfeMsBc+TP5diSJZ2UdaewPDBTLt7ifjCdx76Sv1Yp2
BkJ9muJnPSSh7fuxr7qHAXETz1r1KYkkF+OY//oZyJRYLWa8IhFn9rf92DgD
6jw7s9K3JMJ+HT/zREUC408+mDnVk5D/0qK3WE0CJxv0BFQTibMli6veiyRw
Vfe5pug7Cemntw67aklASfn6WkYHicBk5tSeGRJ4KSlxr7GHxHi417uA2RLY
5TFpxqs+EoeOl/ox50pgOL2mMmaIxJD3LLUocwnMtI6JPzBKYq/jxTzNhfT5
TqUlQs9Qqnd537aMpRJo/yPbERpyi/Kea6+IVRKYnLjL3fJFJuWpxHPdtF4C
pe1Lzd6W51IbC+NHL3pLYMLjwulplRVU1SPJJOEeCSD4mH1U8XtqzU13q9SD
EigKa/zRlveRsjqiHVN4UgK6aZ31pQ9qKMoo3WT8qgTaTl9P8bBsojTjs/12
vJWAODeg1n1KG9W9/0v7EpEkQgvObQnL6qOuFjhHrdSSRIDx/Evl5v3UEpVG
S1tdSQwxJLZ35PRT8RmN1zeYSOLE4rTwzMIByq67yX6HrSTG/BmCqKo/VJZb
S+7FY5IwuDlD+XnnPypwVduVz02S0JGtl50yJgEu2bvc98YE8JceDU37zMTJ
t0WeUWpSYK+ZGxy8Shkf5v3bbHdIGlcezDlaX8jHtJE3X8v+ToI5r2d3wUMR
PINn625hyOC11Z/w/BwRUlTj9v6RkoH+Mfex3HciTJ+zX0akKAODlNG7GXT/
6Hnr6PlMk8G1JXqH/JTFMGo6f5C9VgbNcjeP+fmJsfCNA2t9qgzixjmhPrMI
nLB7vaErQwYs7Zxa/jwCb5pm3TyWJQPmrIFjuUsILBmVMb79WgbWz/d/k6b7
abnx801/a2Vwwzr7v8cXCNimCG/FSjPxRKM8a9k4gYvGIb/05Zn4V1knnD6Z
xPs3Q6b5ikxsf8hsmaRGYk1z5btuARNlbosisoxJOPBP9loYMrE+u0P4cyeJ
qJRf8z6YMBHcHtaVGUCixtjplIcFE3n3983de5bExjXGqmHLmTAS5tp1J5KI
aU7YrGnDRGuLrk5iBonPuxTuZq1lwqUuN2hdDgmnkLb5zS5MrLmQ051J90Pg
dFvvDf8xcaarzki1nURK4ZO4yu1MrI6u0D84SKJsq7B8+W4mrPUTykdlTlD9
E8+M5+6l4yPCaoczSRT/Zs8sswAmpnJFZcs1MykscHDNOMaEOXSL/wU+p0IO
T81NOMeEXcHN6TbqBVSG2vnf/ItMvI1+HlC4vJiqedovDo9koiGde3DV3jJK
c/B14IkbTERtDhW8cv9AvfB2s3R/wsTuyDB988x66qt88Z7PL5hgLB3wSM1v
oGTuzk5am8eEzmN/leTqRmrtD4b04lImNp9oXcodbaY6Xa6/ndrCxFVpi/MV
glaKv/rzih9TZBGuOHMfb3UPhZ+LAlyUZbHkiNviaIef1Nbzd+9W82Rxi0uo
9Mz8RWUU+csXaspiVYR9bq3Bb2r5Ql5ZipksHl70tlw9r486YOiwevtWWezN
N1EqWvKHqlKpWNf9Uhbju3+Y8paNU7oqDqGfX8ui9O+TEpn341Sg8uc3JUWy
OMxaeKhzJgN67LbZdz7Jol35atKZJwycZjHkPbpl4Xtfds9QkQSM5fRzmgRy
iCw8vSCncwIuM8K0PwbIwX9f5G4mKYO1nTbDz0zlceXSet5LfRYehuns1Yid
jJfs+VdnX+BCNTDmwCKBAgZ/yt0xVRUib0Ni3zRCAQUNCYntRkLsnJ3qLa+t
gIi00reXVtPxplfunwwVYElMCq0IpuPUV1uPlQpY6Uss/jtCx0e0dc75K8Cx
fnP9hN0i7Nj/uPZ9jQLWZI5mBNuKwbHJXvvkiwKsjnc92ucsRq5WYXnMNwXc
unz8P5cddLyqNt/9lwL405XzdYLEcL06tv7fBBZ+K+JxUZEYcsPixefVWPDx
VrLRsSLQ5J4ceFSDBfkLvLmbHQk8rpie4yNmISf7Sk7EDgKuKYbzHKax4JhS
UNwTQsfXLZ4tNGTB/6+lwa5SOv7YU/3BChasxk5QiatIfPp04/TuVSw80l7f
cdKRxIqBup+zbFnY55UwsNmLhJHRqrw0exa67XznKNL9dXvN6Rne61k4cHnH
zpYoEhp+2REzN7EwrMKYnJFMQiZjtsc9Vxa2Nb05a/mGxOHK7RVeW1iofrhg
u8wHEr2/bprO2MrCnCnfsgqbSXiwGhI6PFnAbLP9p37R/TmLI3/Hi4Xg82XJ
FuMkVtvY7N3mzcIztZsudZo3qALvoC/aPizYmnt7pSU8oMxDc5e2+bGQPPeT
QmP6M+pB6t/0W/tY0J060nD0Sy6lVWrI9zjIwtDS5XFBWwqo2K4dJ7QO0fvd
sjUJ/lFMnZ7RaJ90nIXc1JdPzQcrqY23X/9NCKHvL/01R2agjpJMCrGMS6Dz
u3Lqb8HOVmr/m/xUpyQWWGtN862Cf1BdLWMc9RQWZpwiNM1vtVFVhE97TCoL
DsU9FRuaOqi78fahV7JYGNWbPnLJ5ie1NlajJqKMhRfTAo5JK/ZTSeHpXuf+
snDna86yspIRKqNlaN3pURZ+vpr/TsdtlMoxXGB5nKGIcvZwpuvQKFX3oVKw
X1oRU749r3HVHKemKPeVuikpYveRpCL7lwzsj5ijbzZdEaRUUYkpawKWX37W
37ZBERmVHkNBKZPQHfnm8JKnihh3NthM2rGgFSh12MpLCTpZ616HbFCF12NF
VVtvJWQ+Lz2yKUAV6R3qmWt8lHCHG90tvqYKszXG7Rv3K4E4JdN9uUkV1poe
9ttOKCHusPxtvgcPewsKZ56OUULNs46caF8+3siGfMkuUcLc4wfz95wQgElF
H3xdpoSzizLj5icKYO2XqPy2Uglj7EaPsTcC1NS/WFFWrYQbPN9KD2l1dN7r
fvy5RQklNivm1AWpQ8nG5sLwPyXoGr1qsAjRwOZwJRjqsuE9UWtO8BIRom1i
y7RnsZEYkrZ+qoMIFXJaThoGbCx56vXoxX8iWJw09WeasNGzsE296aQIgr2u
DxsXscGyMcgbzhOhxiFNO2QTG/NvPDwotVIMFtvkyXFnNrgDEZd/OYqxtDx3
8f7NbNzO1bpX5S3G46Wf3Nw82BC5ew+GXxIjwmQk1sSPDWNWTveHWjFs+CsU
vwezofkLm709CJyu+nC97jwbes//HpE/SODVJSe9ijA2WlnpvUm0/9SV81n5
PJKNrwEpP4pTCciORJ26mMDG6sETDg19BBZmiZXPJLFx6wXb10GKxME9dxMO
pbChFN4xVMwh0db1KtsjjQ2FC8ark01Jeq59H57/jI39oePbtI6SGLuyK8jw
JRuncioFAWEk5jgMc3Ry2Dio27my5AaJHUonkjRes5Ew1XCYk0kisUzeSLmA
jX9DYVrOdD9/Do7MYxaxEc3r+hT/iQR7qWj1eAkbX+7xmY2t9PyYcKexv4wN
o9bvuaq0/wvMNvTuqGQjPq82m7s/knoW8HKk8SMb8v0LXFYopFO/5y4996ma
DRVdn7fmR55RrukbU3Ia2CgNUNw2985bav6N418j29mok1KLDjKpopQVc2I3
dLExL3H1BtubNVTXsTEHwU82vCYx/IIn11NXXQNKbvSz4Vdu5OzQ1EgNCvc+
vDfOxibHiKaU7G9Uepzn6TwVZVz1PH3wMK13mrE203sWKMP4+tatwfFDlFyU
uu/iq8owGBRMGImQQn3GqfyPG1RQe28hm9qqjNjHfOn78hy8G1Rex68TIO7S
VbcdChxcDx3SXfFXgOve/GwdJQ6CtTRf+PLVkaDFP5DI5UA84imftlEdKZG8
jisEvV5D63ppnToe7lMtO2nCQV6JUe2DWg2UGnMiN7pz0Lo4JkB+mwhlSpG9
XA8OpE/1ej04QNdzj4rNp20czDSJrbALEuFjsoqM7S4O1A5fCj6eIkIdR8V/
sT8HxYtGlyz9JULrINtZP4x+Dxte+vuIGGOPFbWkX3BQWyJW+h1NIPp1vNT4
Kw4Y3UfLf9wlMLti1vc/uRxsiJp3uvYVAff2VYntbzmAIKUj9RuBYrVgovQD
B/YPHr3n65Nw1+ZJFlRxYPC6Ir59IYlRo5TmV7UcDM/dGpBpT0LfuiA+vZGD
aU13nU1ov1a80f7Y7a8cXG076NV3nl7v8c0l4TsHi2t452/TfBN1TFIY0cnB
UGINZ1IBvf78xbGQHg46rlUEptXQ66+Ivpz6zUF2mpvc6k56ffL9l0f66Xw0
HczoofliLMPi2v4/dPzuqpTunJtUdHbpod1/OZC/rxd5ROoRNfudo+O2UQ6c
ehbIN7FzKPfv/mqbJnCxu3de4/DsEmrsN/PfGmkuGp/qMPxdKqioseg6KyYX
7SsX7F8y9QNVzH1yxUKBiy6te15laTWU/oo+LqHGhbGhv13F52aq2CHwD1+D
i23Bfv4281uoLVsUq9liLqp8zQ33X/tGRR6aFSk1jQvJgb68HMcf1Gial3K7
ARf10o8WUdVdVDH7Gyt9BRc5JYP6jC991JaGj0wLfy7s4o9WXE8Yo2KvqapM
PMyFfPrTb9yF41SVk6Oo+CgXP5r15nk1j1PLvrQYO5ziIivgYnvlBdpPNfZu
8Q7jws28tEqvVAJDTaxXcclc3HEI/3XYciJCv1n5jr/nonudfdKFqUw87XxT
lzNDFYty3h6YQ+uGouj4Ls0uVRDBXFmN+Wr4GL36N/enKmxtjnm+cFNDtCLh
J9erCoMv5qdXB6lBNOH1vt4/tG7M75/k+kEN+q0Tj+RM4KHYUt95yjYBbO8F
hTiq8VCYM1sz45I6Qk3Cbkes4KGq/dEazUYh7B64zghaxUPl/TfLyyVE4Eyf
nRpgy4NETU37JGUR4tTep7s58JDcuCPNy0SE1DF2lr4bDwp31q8SHBfh3Zuo
gncHeQiPOj1aMpX2T6uvt0y8zUOCiOM5sJ2A92HNi/l36f/nz5iZfZjA+9u3
LU6n8SA/brPqZBiBq5IPr0x6yEPJ1W23GI8JaD8stJHN5uGu+aPxXAaJkKZV
o8W5PDSHCWu3skn8kv9w59wbHnbOn68xSYvEk/8apCYX8zDv669e05UklnB7
nyt84iFNOnnI8zKJO4v2b6uo5sFvo4pb+y0Sk3ePcC7W8eD5ymrxf89I7I49
/mZ1Aw/Pwnpufn5H4mOhtK9SEw83loUdtWkkYTJwTvjhKw9Fhm9rX/4mEStW
LA3/zoPRSJBK69YTFMM60n9tGw87WoYtT96/Q23xV9NW6eThnl3MdnVkUQXJ
8Z8+dfNg7vHnwZ9LudT0D1NPRP7iIUDOdmPsxLdU7wz9L9xBHgqE+fMn91ZQ
xxosI/gSfBz/9e3C36J66huzeEH9BD7kpl/bu+XIF2qZsc3PGGk+LO3Lm1Su
NFEKFzasUJfn42nB64TulS1UHLwZIi4fKpm9xxtS26jnN6N2TJ3JR5BPJ2/b
g9/U4LYOS/0NfGhW5QneLxuheguO7NV15CMvxixGb3yE6iHZydoufJx/bbTb
6dEo9b1h3iTxf3yku6y0MRCPUx9Xny9S9OHj11xS4PSPgQem+tZ9QXzcbii+
mvxuAnYw9617nMVHqc79Rk9nJlpSJLabq6ohjant+FuohNzyxYfCi9UQUjLp
hnGVGmw85d9Zl6pBOG1Xhu4/NTQwPqjJVqjBzMl5IV8kwPBs1+fHPqnhCKPi
Wz1dz7Mj/P/ubFLD2Jdm9+ERAW6sv39g2aAahmtLa+LEGjjerLp3VCzAWoOW
OhsDERT8G99kaQrwZH+Xv6WlCNeUkpX3TBOA96p+wIj2K08XGT7s0BXgZtmn
o0x/EX4nreqrniuA1cKsgaIiETZvD/TJWCVAr5/OgYfbxVjQ17nT46AAfbsr
J+elEPB8kQvnQwL8+33gPy16foeeimLbHxXgiGS81KkPBOq4i54uPCWA3b7a
6bPHCPiaX52ocVGA9alNdovXkIiW2l2tHCHAZ837poc8SbwqW3xHLoreb2Ls
4dTDJGQ3/7YZjqX72HSW1jhdv/rT3xK/rgswR8X+gvAlzet9sQOtCQLM23PT
2ew9iUMvfAsbkgT/90GRNj9IJJxaFvMxRYAVddtNXEZIFFpreJfcFSDkb6Kx
oXsi1cPtR16aAIH8lUE6oY8p5eYi9tMHAmzfGTHxvF8uZXbneuv9hwLk3fJn
7It7S7n67X2a/EQA00xJ64q3pdRp85Uh154JkPjC3bLsTyX1vmxw9rkcAX62
vnZaol5DDUW9mxj4WgDNcrK6Rq+e0ticUH2gQADlXXsXJVFfqO19qw5vfSdA
9ouu/ftmfaUkVZMKF9TQcadhPeGKNkq72T/GpF4ADbVpMR/K2ynrO7bes77Q
PuCZxsBU+07qqvkIW/2bAKs19vxIdO6hDDavcRn6ScefL/M/Y9xLud2RGEyb
pI541gGtqnlD1GtzZ1IwVx17s//OMFCURNDTNnGTqTpiJh4sX75NEtbGfqJE
c3U4JVt8ssqVRN2sIHXdhepoGvmupuIzAb1EBtd8lTrqAoZE98snQsSUlnfc
oo5W9Vq7yWcn4dCn1P6YC+pwn+/WFd4lD2Pv0Xy1NnVkB78Y+P6cjQi1qKVq
neo4HAH1njY2egv1i/g99P22Hf3YQfukVNL9Ha9fHSv/CkdzdylDs7b4PZeh
gQ+BFYE/CBWwLaMb2aoaOFbs/0jxDAe/eIbDcss0MDBX32JgCQ/Wb9/5y63U
wO7CzlMRvvQc2rN1RNZaA7dbXj7QjqPnXvmVceZaDXy0rM6eNcBD40mGtIyr
Bq4HmI5mJfBR9rNUaeIBDYhO+Bg/o/vxbr6n7sgtDfx2lp91NkkDKVpPagvv
aKDlfHn16DsNJJ+ROnM5VQO+eTs52/o1kLA8oVkvUwN6BtpO5CIhokvrIze/
0kDGd4Vl05qEOPnJWuLtRw3YzcmZNjdEhEDja2nh1Rrw3FV3I/m6CEejOje5
1mlgzVxf9opHIvhvCHo83KgB2dMsn+4mEXwacr10OzVQkCk+2zVXDOfvRlUX
JYSYsStZs+abGI5LTpxwnijEgymKbo5/xdhwq1J/xiQhzathKvUKBNZu8z73
Rl6IydcVut+aEVjZfQt/uEKMya/McaH1aJn1YPdrvhA50v+mZCURWHLfMiZM
XQgisLZb9jnNAz7NAzqkEKEhgR7x3wlaH/h3HfWEmLSh8UKwGQljh23rdWbT
93l0KOWJDQnDJ0+kBg2F2FI+4b9GdxJ6B9e6XjAV4r850e81LpDQrUuY7Ggu
xJOrkkHGiSR05v1+pk0JUdvT0b7sKQmtWMpzYIEQ16o2/bUvI6E5el4lz1KI
Tctdnju1kCCcP+eFLhXSvP1Dz5X2/8Ls6bs3rRDCgHkwNFHiOiUQHVTXXiVE
0XSp+O5/mRT/+Nvifhshptuk/6H4OZTqV5UDuXZC+JoRe1hzCijOIvepofZC
HJZXzPe0fkcpSkkcm7ZJCFVGeNAGi4+UZM87UauTEHmcrVMvmVZTvVXRuYmu
QlgbHfjOMaqj3qfoTyC2CkGPlk+B7CbqkpXraYGPEBlX9rEoyVZKKSI7RPGM
EFZb50gH/vhFKZNHrvzLEGJD8LPTc8JHqJD4w7UeUvTcrS8dd3/IxMXKprX3
3EXIGVllNyFVFZpZKSMKW0XoryJ+vqxWRVbc7kQ/D7puWqe7eEvy0OTF6Dfb
LsIur+Tc9HU86EuLwot2iRAvlCt9TutqhZlLZSs95zstpL92rVEDK7Fhlfii
CGtNzGWLf6kjMThp4OQlEa3cimaL+Bow8dl5rS1chCTR+eMZizTgajHadT9S
BAnNry5+kRpIrxGEWMTSOlOeH35knhC2kx2LN90SQcXgi92XBSJc2Fe3JPKl
COu1lzgExYjhPaCTzs0Wob6kzakjUwzrPQd5V3JE4LqrnVj8TowpvqpdMa9F
+Ce70PLHiBihOx0u3qB1yC+Js7bWifZTXUl/iRIR3BqUGVL7CFh7DWxJfCfC
DNvOIZ1QAlO2RRjfKheh21buq8v/9cj9ff29T/T5R4bGAjRIeLeIF+tVi8AI
+3DU15iEtZtP2v0aEXRS9bzcrElMcWUdz6gXQernx1C9IyR6vrh0GDbQfarz
651sJIkyp/trHn0RwVcq93hTKom0z2MvjOm+nLTbKv1+PonQTdZaWc0099e5
bjrQQJ9Xd+2CaYsISuaBp8wG6PM2dA89+ybCwlfxsVK11yi9GnM381YRfrbs
r4bBI2rKupCSlz9EmNvy8+ravblUz6d6I6pdhJDRwI8vbQqpsrUz4nI66Lyq
RJU7apdToXbFu193i6Dx6oi3cHsV5V3Jq7P8KYKVy+ULuR9qKWvbbYsKaC5L
KvhSc9S8gZpiLcMp6hNB9+IBudtSX6nQ5Uuelw2L8OjiucLp5W1UKPKk6qTE
uL5GddJprT4qVO/Z1V/qYrzh5v6xms+Ah0/h6HahGDt3jw6oJDGAh1Wu30Vi
3BrpO/lGXgJ9pn1adaQYnB/uPu/rJbB+sW7max0x+D5JKzIOTADhGFcSOUeM
YJ0aVlCqNB6fDRwxXyWG+BiH8XzCZDR8W+F89pAYatF5G98/UMbp44brOg6L
od+Xz7doVIa+hsB25VExwgo75a7LqyBwXfeCyYFiCKvlzsFDBVrFF6ZePCNG
xrxoC0kBB7vuf+yKviRGZc7Rs4EnuJDwdw5ISRGDS47Vn17Bxx3O0j3MO2IM
UmcWXtvHx9rMWTu33xXDJrWfvE3rQXIXw0U3TYzeY4GuN/7yscLl5sJ0um71
/jiPs++oIdyyjZn1iubc6W55E2idnargG/32oxhQEL0SPBWCb/nVbkkVfV/j
cznHfwjBOmg3Ob9ajGSta5u6ZUX4+9UgMK9ODPuZukuMTGn+ftzn9bJJjLzp
IkX/yyIccN5LZXaJsa7ppGmNHZ338O/Ds3vEuFP0Yt+CHWK4Fdo/TP8pBq93
bOHNU2JYGRjrpPWKsUl5oNk2i86r9B+l20NihH/WfmWvTvN06oHWuIkErn97
MHdyK4Hsr23x6tIEtrKNmyeOE3jI3bApdhIBn+DQ5AEuibjjphVXZAm0z6iP
yFtOIvzx7WBVeZrjoxj5cW4kgjp5i6MmE7g//Y9wD83bfvZ/n0awCPAbW9xk
6f7wDN6+h61EwKzn8uoSuj+cs+v0LrHp/Qa0Dpz6QmJN/4p2lgqBHc4WtSZ/
SCzTeX7zAofAoi0Jh4aMEqj5zjOcp6gScI7dqeKz8gllEB6jep5HwOoKqb7u
RR4lGA04HywgsHkG84GEbwWlaNC1lKlBQO242dqzfz9Q0h6OkkFCAp2B0T6a
gdXUrwrz/acIAq9VPvpEhn6h8hNHXY9pE/iTYbbM1LqV8rY6arTPiIDNH+Up
ymQvZVhfdLJ+DoFHz5R1i3p7qaFtyp8wl8CeeO2ylXl9VOCZ23vlaB0N33yj
+qnrABWZ9+FxPEVgfU1AiFnMEPXKRNu0ZAWtk+VbQuqkxymFqZXzRZsJvHvw
4ciBz1JIHyWWFp8nsL82amcRoQhvW92L2hcI+P13e0OGnSJ0b86pP03rsvy6
0qYLgYq4vWzZrkXhBI5r3ivW/qqIhPCdUS+iCfTLhq95H6+ECJ2sH2k36fyc
L/aWFijjoP2qoPCnBHIspsyZKMuFSYrD+9/PCAxLfXY6ZcLF4F8Xge0LAifu
9O/+t5UL33jfdPlsAob2N1wKXnOxozOq5tQbAhqFKgnVh1ThfPyr9oFyAg/O
u5a2d/GwMHV/kSPtAwRaxuoNb2huiJb5VEPXlaPn4KxPAwI4nLjStLaNgOTT
i6E5Wurw2vD8j1UnXWe8SfN8gtQRITU+df5vAkH7Z94wo33bD6fTgeqjdP5K
uOTuMiF6l3FDr9DckHSfsIobE2LEMOWKCs3FD+V8/7hwRWDJFqdPnkCiX2p/
lfdSEcweT24clSGh/fH2vQW0DoVMuTzvizIJ3w7F3hf/iRE5PHXpRg6JjS/D
Ha7QcyT+22O7KrrOdXsG/9ZdEdPfuWZbGZ+EaiKnZEmZGF+2CqJfiUhcKXEo
fm1MoG116k0zgq5r0uZkhS2BPnOL+49JmluatnR8onlfhu1akEZz+YjIt644
jsDs7Jv9cboklAddx52kSZjfMWKo6dFcvzuiWp/ed8nlfLmoWSQ4o7IhI6b0
vbx+EBcMSGQ7MWKP7CTh7nBAT86IhMwtr3GjMyR2LWCanZlDYjij2uZbPAl/
3auLJ8wlccP3aVgIzfMnuTNWHzUhseXJg/yZH2k9knzh+I/etzprZu/bbpq3
uq08988j8eisC88oKYxKqGnw6zMn0fbu2MYZxRlU6mvvo7ssSFx4c13tSmYO
lZU2HtxJkTh4d96J2YxCKu9KWKTHAhLyAQ3PG1eUU1W7MlJdLEnscXLag+4q
Kv2huk3eYhKDzP1SZ1fXUcHDQb80l5KozbLZO/qwgaJOuBh20HPk0HLZc4/M
v1IpkfJP99A+0d5M4rz+SBt18OXWN2c30ufF1GS9MOyjBHJq9Zm7SYStt6iU
M2fALfmEjMw1EhMXfqYmG03GlMPL28LjSLA+P1ivkDwZz9YoFArpvJSeDr/U
y50CJYmYM3Nv0nmZHXrW8d8U5G3KkPa4TWLSNr8MF1cWCMXmiQWP6Pta32ht
IZTQHGAhcZL2mbrPfH+GxKogxG5is0IFib57qXdufVCBiU5xTkwlCbVkB99M
WQ7CquyPZdJ5ztmbMyfuAAeYvXP8ax0Jj2WX+nPWcBHfGjO6gOZQm+o7pywm
8WD1cnNDaRuJ+9W2OV7zeRgKn/ZyQwcJq8L8BcF+PNguyDzkQ38nynDDtJhG
Hhixxf/i+0gcrShrkn/Cxz3fsHpd2ke8dIt49KaLj/XLHZ5nDZIQnI/u3kmo
IX2w2b9imMQMrtvliPNqcCy9tdHxH4kkwXR5pddqkEncadZGc3Afy7j/2JAa
Hvob8veM0fW0ZNLq5pkCuK4eHh4fJxGrKNQy3CLA/wBT0HQE
"]]},
Annotation[#, "Charting`Private`Tag$22024145#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{1.2, 0.009294493578885146},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->FrontEndValueCache[{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}}, {{
Automatic, {{0.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {4.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {6.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {8.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {10.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-2.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {-1.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {-1.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {-0.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {0.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {1.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {1.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {2.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {3.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {3.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {4.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {5.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {5.5,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}, {
AbsoluteThickness[0.1]}}, {6.5,