-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig.py
108 lines (105 loc) · 3.18 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
data_dict = {
0: 'Scene-15',
1: 'LandUse-21',
2: 'handwritten',
3: 'MSRC_v1',
4: 'NoisyMNIST'
}
def get_config(flag=1):
"""Determine the parameter information of the network"""
data_name = data_dict[flag]
if data_name in ['Scene-15']:
return dict(
dataset=data_name,
topk=10,
missing_rate=0.0,
n_clusters=15,
training=dict(
lr=1.0e-3,
epoch=500,
batch_size=128,
),
Autoencoder=dict(
gcnEncoder1=[40, 1024, 1024, 1024, 1024 // 2],
gcnEncoder2=[59, 1024, 1024, 1024, 1024 // 2],
activations1='relu',
activations2='relu',
batchnorm=True,
)
)
elif data_name in ['LandUse-21']:
return dict(
dataset=data_name,
topk=10,
missing_rate=0.0,
n_clusters=21,
training=dict(
lr=1.0e-3,
epoch=500,
batch_size=256,
),
Autoencoder=dict(
gcnEncoder1=[59, 1024, 1024, 1024, 1024 // 4],
gcnEncoder2=[40, 1024, 1024, 1024, 1024 // 4],
activations1='relu',
activations2='relu',
batchnorm=True,
),
)
elif data_name in ['MSRC_v1']:
return dict(
dataset=data_name,
topk=10,
missing_rate=0.0,
n_clusters=7,
training=dict(
lr=1.0e-3,
epoch=500,
batch_size=256,
),
Autoencoder=dict(
gcnEncoder1=[576, 1024, 1024, 1024, 1024 // 8],
gcnEncoder2=[512, 1024, 1024, 1024, 1024 // 8],
activations1='relu',
activations2='relu',
batchnorm=True,
),
)
elif data_name in ['handwritten']:
return dict(
dataset=data_name,
topk=10,
missing_rate=0.0,
n_clusters=10,
training=dict(
lr=1.0e-3,
epoch=500,
batch_size=256,
),
Autoencoder=dict(
gcnEncoder1=[76, 1024, 1024, 1024, 1024 // 2],
gcnEncoder2=[64, 1024, 1024, 1024, 1024 // 2],
activations1='relu',
activations2='relu',
batchnorm=True,
),
)
elif data_name in ['NoisyMNIST']:
return dict(
dataset=data_name,
topk=10,
missing_rate=0.0,
n_clusters=10,
training=dict(
lr=1.0e-3,
epoch=500,
batch_size=256,
),
Autoencoder=dict(
gcnEncoder1=[784, 1024, 1024, 1024, 1024 // 8],
gcnEncoder2=[784, 1024, 1024, 1024, 1024 // 8],
activations1='relu',
activations2='relu',
batchnorm=True,
),
)