diff --git a/demo/text_classification/embedding/model.py b/demo/text_classification/embedding/model.py new file mode 100644 index 000000000..f7e029c69 --- /dev/null +++ b/demo/text_classification/embedding/model.py @@ -0,0 +1,175 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from typing import List + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + +import paddlenlp as nlp +from paddlenlp.embeddings import TokenEmbedding +from paddlenlp.data import JiebaTokenizer + +from paddlehub.utils.log import logger +from paddlehub.utils.utils import pad_sequence, trunc_sequence + + +class BoWModel(nn.Layer): + """ + This class implements the Bag of Words Classification Network model to classify texts. + At a high level, the model starts by embedding the tokens and running them through + a word embedding. Then, we encode these epresentations with a `BoWEncoder`. + Lastly, we take the output of the encoder to create a final representation, + which is passed through some feed-forward layers to output a logits (`output_layer`). + Args: + vocab_size (obj:`int`): The vocabulary size. + emb_dim (obj:`int`, optional, defaults to 300): The embedding dimension. + hidden_size (obj:`int`, optional, defaults to 128): The first full-connected layer hidden size. + fc_hidden_size (obj:`int`, optional, defaults to 96): The second full-connected layer hidden size. + num_classes (obj:`int`): All the labels that the data has. + """ + + def __init__(self, + num_classes: int = 2, + embedder: TokenEmbedding = None, + tokenizer: JiebaTokenizer = None, + hidden_size: int = 128, + fc_hidden_size: int = 96, + load_checkpoint: str = None, + label_map: dict = None): + super().__init__() + self.embedder = embedder + self.tokenizer = tokenizer + self.label_map = label_map + + emb_dim = self.embedder.embedding_dim + self.bow_encoder = nlp.seq2vec.BoWEncoder(emb_dim) + self.fc1 = nn.Linear(self.bow_encoder.get_output_dim(), hidden_size) + self.fc2 = nn.Linear(hidden_size, fc_hidden_size) + self.dropout = nn.Dropout(p=0.3, axis=1) + self.output_layer = nn.Linear(fc_hidden_size, num_classes) + self.criterion = nn.loss.CrossEntropyLoss() + self.metric = paddle.metric.Accuracy() + + if load_checkpoint is not None and os.path.isfile(load_checkpoint): + state_dict = paddle.load(load_checkpoint) + self.set_state_dict(state_dict) + logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint)) + + def training_step(self, batch: List[paddle.Tensor], batch_idx: int): + """ + One step for training, which should be called as forward computation. + Args: + batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed, + such as input_ids, sent_ids, pos_ids, input_mask and labels. + batch_idx(int): The index of batch. + Returns: + results(:obj: Dict) : The model outputs, such as loss and metrics. + """ + _, avg_loss, metric = self(ids=batch[0], labels=batch[1]) + self.metric.reset() + return {'loss': avg_loss, 'metrics': metric} + + def validation_step(self, batch: List[paddle.Tensor], batch_idx: int): + """ + One step for validation, which should be called as forward computation. + Args: + batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed, + such as input_ids, sent_ids, pos_ids, input_mask and labels. + batch_idx(int): The index of batch. + Returns: + results(:obj: Dict) : The model outputs, such as metrics. + """ + _, _, metric = self(ids=batch[0], labels=batch[1]) + self.metric.reset() + return {'metrics': metric} + + def forward(self, ids: paddle.Tensor, labels: paddle.Tensor = None): + + # Shape: (batch_size, num_tokens, embedding_dim) + embedded_text = self.embedder(ids) + + # Shape: (batch_size, embedding_dim) + summed = self.bow_encoder(embedded_text) + summed = self.dropout(summed) + encoded_text = paddle.tanh(summed) + + # Shape: (batch_size, hidden_size) + fc1_out = paddle.tanh(self.fc1(encoded_text)) + # Shape: (batch_size, fc_hidden_size) + fc2_out = paddle.tanh(self.fc2(fc1_out)) + # Shape: (batch_size, num_classes) + logits = self.output_layer(fc2_out) + + probs = F.softmax(logits, axis=1) + if labels is not None: + loss = self.criterion(logits, labels) + correct = self.metric.compute(probs, labels) + acc = self.metric.update(correct) + return probs, loss, {'acc': acc} + else: + return probs + + def _batchify(self, data: List[List[str]], max_seq_len: int, batch_size: int): + examples = [] + for item in data: + ids = self.tokenizer.encode(sentence=item[0]) + + if len(ids) > max_seq_len: + ids = trunc_sequence(ids, max_seq_len) + else: + pad_token = self.tokenizer.vocab.pad_token + pad_token_id = self.tokenizer.vocab.to_indices(pad_token) + ids = pad_sequence(ids, max_seq_len, pad_token_id) + examples.append(ids) + + # Seperates data into some batches. + one_batch = [] + for example in examples: + one_batch.append(example) + if len(one_batch) == batch_size: + yield one_batch + one_batch = [] + if one_batch: + # The last batch whose size is less than the config batch_size setting. + yield one_batch + + def predict( + self, + data: List[List[str]], + max_seq_len: int = 128, + batch_size: int = 1, + use_gpu: bool = False, + return_result: bool = True, + ): + paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu') + + batches = self._batchify(data, max_seq_len, batch_size) + results = [] + self.eval() + for batch in batches: + ids = paddle.to_tensor(batch) + probs = self(ids) + idx = paddle.argmax(probs, axis=1).numpy() + + if return_result: + idx = idx.tolist() + labels = [self.label_map[i] for i in idx] + results.extend(labels) + else: + results.extend(probs.numpy()) + + return results diff --git a/demo/text_classification/embedding/predict.py b/demo/text_classification/embedding/predict.py new file mode 100644 index 000000000..18f90ee24 --- /dev/null +++ b/demo/text_classification/embedding/predict.py @@ -0,0 +1,55 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddlehub as hub +from paddlenlp.data import JiebaTokenizer +from model import BoWModel + +import ast +import argparse + + +parser = argparse.ArgumentParser(__doc__) +parser.add_argument("--hub_embedding_name", type=str, default='w2v_baidu_encyclopedia_target_word-word_dim300', help="") +parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.") +parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number in batch for training.") +parser.add_argument("--checkpoint", type=str, default='./checkpoint/best_model/model.pdparams', help="Model checkpoint") +parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") + +args = parser.parse_args() + + +if __name__ == '__main__': + # Data to be prdicted + data = [ + ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], + ["交通方便;环境很好;服务态度很好 房间较小"], + ["还稍微重了点,可能是硬盘大的原故,还要再轻半斤就好了。其他要进一步验证。贴的几种膜气泡较多,用不了多久就要更换了,屏幕膜稍好点,但比没有要强多了。建议配赠几张膜让用用户自己贴。"], + ["前台接待太差,酒店有A B楼之分,本人check-in后,前台未告诉B楼在何处,并且B楼无明显指示;房间太小,根本不像4星级设施,下次不会再选择入住此店啦"], + ["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"], + ] + + label_map = {0: 'negative', 1: 'positive'} + + embedder = hub.Module(name=args.hub_embedding_name) + tokenizer = embedder.get_tokenizer() + model = BoWModel( + embedder=embedder, + tokenizer=tokenizer, + load_checkpoint=args.checkpoint, + label_map=label_map) + + results = model.predict(data, max_seq_len=args.max_seq_len, batch_size=args.batch_size, use_gpu=args.use_gpu, return_result=False) + for idx, text in enumerate(data): + print('Data: {} \t Lable: {}'.format(text[0], results[idx])) diff --git a/demo/text_classification/embedding/train.py b/demo/text_classification/embedding/train.py new file mode 100644 index 000000000..ee7bbaa9d --- /dev/null +++ b/demo/text_classification/embedding/train.py @@ -0,0 +1,57 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +import paddlehub as hub +from paddlehub.datasets import ChnSentiCorp +from paddlenlp.data import JiebaTokenizer +from model import BoWModel + +import ast +import argparse + + +parser = argparse.ArgumentParser(__doc__) +parser.add_argument("--hub_embedding_name", type=str, default='w2v_baidu_encyclopedia_target_word-word_dim300', help="") +parser.add_argument("--num_epoch", type=int, default=10, help="Number of epoches for fine-tuning.") +parser.add_argument("--learning_rate", type=float, default=5e-4, help="Learning rate used to train with warmup.") +parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.") +parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number in batch for training.") +parser.add_argument("--checkpoint_dir", type=str, default='./checkpoint', help="Directory to model checkpoint") +parser.add_argument("--save_interval", type=int, default=5, help="Save checkpoint every n epoch.") +parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") + +args = parser.parse_args() + + +if __name__ == '__main__': + embedder = hub.Module(name=args.hub_embedding_name) + tokenizer = embedder.get_tokenizer() + + train_dataset = ChnSentiCorp(tokenizer=tokenizer, max_seq_len=args.max_seq_len, mode='train') + dev_dataset = ChnSentiCorp(tokenizer=tokenizer, max_seq_len=args.max_seq_len, mode='dev') + test_dataset = ChnSentiCorp(tokenizer=tokenizer, max_seq_len=args.max_seq_len, mode='test') + + model = BoWModel(embedder=embedder) + optimizer = paddle.optimizer.AdamW( + learning_rate=args.learning_rate, parameters=model.parameters()) + trainer = hub.Trainer(model, optimizer, checkpoint_dir=args.checkpoint_dir, use_gpu=args.use_gpu) + trainer.train( + train_dataset, + epochs=args.num_epoch, + batch_size=args.batch_size, + eval_dataset=dev_dataset, + save_interval=args.save_interval, + ) + trainer.evaluate(test_dataset, batch_size=args.batch_size) diff --git a/modules/text/embedding/w2v_baidu_encyclopedia_target_word-word_dim300/module.py b/modules/text/embedding/w2v_baidu_encyclopedia_target_word-word_dim300/module.py index 03e3d582a..c42fc4f93 100644 --- a/modules/text/embedding/w2v_baidu_encyclopedia_target_word-word_dim300/module.py +++ b/modules/text/embedding/w2v_baidu_encyclopedia_target_word-word_dim300/module.py @@ -15,6 +15,7 @@ from typing import List from paddlenlp.embeddings import TokenEmbedding from paddlehub.module.module import moduleinfo, serving +from paddlehub.module.nlp_module import EmbeddingModule @moduleinfo( @@ -23,33 +24,13 @@ summary="", author="paddlepaddle", author_email="", - type="nlp/semantic_model") + type="nlp/semantic_model", + meta=EmbeddingModule) class Embedding(TokenEmbedding): """ Embedding model """ - def __init__(self, *args, **kwargs): - super(Embedding, self).__init__(embedding_name="w2v.baidu_encyclopedia.target.word-word.dim300", *args, **kwargs) - - @serving - def calc_similarity(self, data: List[List[str]]): - """ - Calculate similarities of giving word pairs. - """ - results = [] - for word_pair in data: - if len(word_pair) != 2: - raise RuntimeError( - f'The input must have two words, but got {len(word_pair)}. Please check your inputs.') - if not isinstance(word_pair[0], str) or not isinstance(word_pair[1], str): - raise RuntimeError( - f'The types of text pair must be (str, str), but got' - f' ({type(word_pair[0]).__name__}, {type(word_pair[1]).__name__}). Please check your inputs.') + embedding_name = 'w2v.baidu_encyclopedia.target.word-word.dim300' - for word in word_pair: - if self.get_idx_from_word(word) == \ - self.get_idx_from_word(self.vocab.unk_token): - raise RuntimeError( - f'Word "{word}" is not in vocab. Please check your inputs.') - results.append(str(self.cosine_sim(*word_pair))) - return results + def __init__(self, *args, **kwargs): + super(Embedding, self).__init__(embedding_name=self.embedding_name, *args, **kwargs) \ No newline at end of file diff --git a/paddlehub/datasets/base_nlp_dataset.py b/paddlehub/datasets/base_nlp_dataset.py index bee1aa4a6..504a7d167 100644 --- a/paddlehub/datasets/base_nlp_dataset.py +++ b/paddlehub/datasets/base_nlp_dataset.py @@ -20,13 +20,14 @@ import paddle from paddlehub.env import DATA_HOME -from paddlehub.text.bert_tokenizer import BertTokenizer -from paddlehub.text.tokenizer import CustomTokenizer +from paddlenlp.transformers import PretrainedTokenizer +from paddlenlp.data import JiebaTokenizer from paddlehub.utils.log import logger -from paddlehub.utils.utils import download, reseg_token_label +from paddlehub.utils.utils import download, reseg_token_label, pad_sequence, trunc_sequence from paddlehub.utils.xarfile import is_xarfile, unarchive + class InputExample(object): """ The input data structure of Transformer modules (BERT, ERNIE and so on). @@ -72,7 +73,7 @@ class BaseNLPDataset(object): def __init__(self, base_path: str, - tokenizer: Union[BertTokenizer, CustomTokenizer], + tokenizer: Union[PretrainedTokenizer, JiebaTokenizer], max_seq_len: Optional[int] = 128, mode: Optional[str] = "train", data_file: Optional[str] = None, @@ -81,7 +82,7 @@ def __init__(self, """ Ags: base_path (:obj:`str`): The directory to the whole dataset. - tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`): + tokenizer (:obj:`PretrainedTokenizer` or :obj:`JiebaTokenizer`): It tokenizes the text and encodes the data as model needed. max_seq_len (:obj:`int`, `optional`, defaults to :128): If set to a number, will limit the total sequence returned so that it has a maximum length. @@ -159,7 +160,7 @@ class TextClassificationDataset(BaseNLPDataset, paddle.io.Dataset): def __init__(self, base_path: str, - tokenizer: Union[BertTokenizer, CustomTokenizer], + tokenizer: Union[PretrainedTokenizer, JiebaTokenizer], max_seq_len: int = 128, mode: str = "train", data_file: str = None, @@ -169,7 +170,7 @@ def __init__(self, """ Ags: base_path (:obj:`str`): The directory to the whole dataset. - tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`): + tokenizer (:obj:`PretrainedTokenizer` or :obj:`JiebaTokenizer`): It tokenizes the text and encodes the data as model needed. max_seq_len (:obj:`int`, `optional`, defaults to :128): If set to a number, will limit the total sequence returned so that it has a maximum length. @@ -231,9 +232,22 @@ def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dic """ records = [] for example in examples: - record = self.tokenizer.encode(text=example.text_a, text_pair=example.text_b, max_seq_len=self.max_seq_len) - # CustomTokenizer will tokenize the text firstly and then lookup words in the vocab - # When all words are not found in the vocab, the text will be dropped. + if isinstance(self.tokenizer, PretrainedTokenizer): + record = self.tokenizer.encode(text=example.text_a, text_pair=example.text_b, max_seq_len=self.max_seq_len) + elif isinstance(self.tokenizer, JiebaTokenizer): + pad_token = self.tokenizer.vocab.pad_token + + ids = self.tokenizer.encode(sentence=example.text_a) + seq_len = min(len(ids), self.max_seq_len) + if len(ids) > self.max_seq_len: + ids = trunc_sequence(ids, self.max_seq_len) + else: + pad_token_id = self.tokenizer.vocab.to_indices(pad_token) + ids = pad_sequence(ids, self.max_seq_len, pad_token_id) + record = {'text': ids, 'seq_len': seq_len} + else: + raise RuntimeError("Unknown type of self.tokenizer: {}, it must be an instance of PretrainedTokenizer or JiebaTokenizer".format(type(self.tokenizer))) + if not record: logger.info( "The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a) @@ -245,19 +259,53 @@ def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dic def __getitem__(self, idx): record = self.records[idx] - if 'label' in record.keys(): - return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['label'], dtype=np.int64) + if isinstance(self.tokenizer, PretrainedTokenizer): + if 'label' in record.keys(): + return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['label'], dtype=np.int64) + else: + return np.array(record['input_ids']), np.array(record['segment_ids']) + elif isinstance(self.tokenizer, JiebaTokenizer): + if 'label' in record.keys(): + return np.array(record['text']), np.array(record['label'], dtype=np.int64) + else: + return np.array(record['text']) else: - return np.array(record['input_ids']), np.array(record['segment_ids']) + raise RuntimeError("Unknown type of self.tokenizer: {}, it must be an instance of PretrainedTokenizer or JiebaTokenizer".format(type(self.tokenizer))) def __len__(self): return len(self.records) class SeqLabelingDataset(BaseNLPDataset, paddle.io.Dataset): + """ + Ags: + base_path (:obj:`str`): The directory to the whole dataset. + tokenizer (:obj:`PretrainedTokenizer` or :obj:`JiebaTokenizer`): + It tokenizes the text and encodes the data as model needed. + max_seq_len (:obj:`int`, `optional`, defaults to :128): + If set to a number, will limit the total sequence returned so that it has a maximum length. + mode (:obj:`str`, `optional`, defaults to `train`): + It identifies the dataset mode (train, test or dev). + data_file(:obj:`str`, `optional`, defaults to :obj:`None`): + The data file name, which is relative to the base_path. + label_file(:obj:`str`, `optional`, defaults to :obj:`None`): + The label file name, which is relative to the base_path. + It is all labels of the dataset, one line one label. + label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`): + The list of all labels of the dataset + split_char(:obj:`str`, `optional`, defaults to :obj:`\002`): + The symbol used to split chars in text and labels + no_entity_label(:obj:`str`, `optional`, defaults to :obj:`O`): + The label used to mark no entities + ignore_label(:obj:`int`, `optional`, defaults to :-100): + If one token's label == ignore_label, it will be ignored when + calculating loss + is_file_with_header(:obj:bool, `optional`, default to :obj: False) : + Whether or not the file is with the header introduction. + """ def __init__(self, base_path: str, - tokenizer: Union[BertTokenizer, CustomTokenizer], + tokenizer: Union[PretrainedTokenizer, JiebaTokenizer], max_seq_len: int = 128, mode: str = "train", data_file: str = None, @@ -309,22 +357,46 @@ def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dic """ records = [] for example in examples: - tokens, labels = reseg_token_label( - tokenizer=self.tokenizer, - tokens=example.text_a.split(self.split_char), - labels=example.label.split(self.split_char)) - record = self.tokenizer.encode( - text=tokens, max_seq_len=self.max_seq_len) - # CustomTokenizer will tokenize the text firstly and then lookup words in the vocab - # When all words are not found in the vocab, the text will be dropped. + tokens = example.text_a.split(self.split_char) + labels = example.label.split(self.split_char) + + # convert tokens into record + if isinstance(self.tokenizer, PretrainedTokenizer): + pad_token = self.tokenizer.pad_token + + tokens, labels = reseg_token_label(tokenizer=self.tokenizer, tokens=tokens, labels=labels) + record = self.tokenizer.encode(text=tokens, max_seq_len=self.max_seq_len) + elif isinstance(self.tokenizer, JiebaTokenizer): + pad_token = self.tokenizer.vocab.pad_token + + ids = [self.tokenizer.vocab.to_indices(token) for token in tokens] + seq_len = min(len(ids), self.max_seq_len) + if len(ids) > self.max_seq_len: + ids = trunc_sequence(ids, self.max_seq_len) + else: + pad_token_id = self.tokenizer.vocab.to_indices(pad_token) + ids = pad_sequence(ids, self.max_seq_len, pad_token_id) + + record = {'text': ids, 'seq_len': seq_len} + else: + raise RuntimeError("Unknown type of self.tokenizer: {}, it must be an instance of PretrainedTokenizer or JiebaTokenizer".format(type(self.tokenizer))) + if not record: logger.info( "The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a) continue + + # convert labels into record if labels: record["label"] = [] - tokens_with_specical_token = self.tokenizer.convert_ids_to_tokens(record['input_ids']) + if isinstance(self.tokenizer, PretrainedTokenizer): + tokens_with_specical_token = self.tokenizer.convert_ids_to_tokens(record['input_ids']) + elif isinstance(self.tokenizer, JiebaTokenizer): + tokens_with_specical_token = [self.tokenizer.vocab.to_tokens(id_) for id_ in record['text']] + else: + raise RuntimeError("Unknown type of self.tokenizer: {}, it must be an instance of PretrainedTokenizer or JiebaTokenizer".format(type(self.tokenizer))) + tokens_index = 0 for token in tokens_with_specical_token: if tokens_index < len( @@ -332,7 +404,7 @@ def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dic record["label"].append( self.label_list.index(labels[tokens_index])) tokens_index += 1 - elif token in [self.tokenizer.pad_token]: + elif token in [pad_token]: record["label"].append(self.ignore_label) # label of special token else: record["label"].append( @@ -342,10 +414,18 @@ def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dic def __getitem__(self, idx): record = self.records[idx] - if 'label' in record.keys(): - return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']), np.array(record['label'], dtype=np.int64) + if isinstance(self.tokenizer, PretrainedTokenizer): + if 'label' in record.keys(): + return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']), np.array(record['label'], dtype=np.int64) + else: + return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']) + elif isinstance(self.tokenizer, JiebaTokenizer): + if 'label' in record.keys(): + return np.array(record['text']), np.array(record['seq_len']), np.array(record['label'], dtype=np.int64) + else: + return np.array(record['text']), np.array(record['seq_len']) else: - return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']) + raise RuntimeError("Unknown type of self.tokenizer: {}, it must be an instance of PretrainedTokenizer or JiebaTokenizer".format(type(self.tokenizer))) def __len__(self): return len(self.records) diff --git a/paddlehub/module/nlp_module.py b/paddlehub/module/nlp_module.py index 80306ffc5..dfd371cfe 100644 --- a/paddlehub/module/nlp_module.py +++ b/paddlehub/module/nlp_module.py @@ -32,6 +32,9 @@ from paddlehub.utils.log import logger from paddlehub.utils.utils import reseg_token_label +from paddlenlp.embeddings.token_embedding import EMBEDDING_HOME, EMBEDDING_URL_ROOT +from paddlenlp.data import JiebaTokenizer + __all__ = [ 'PretrainedModel', 'register_base_model', @@ -510,6 +513,7 @@ def predict( batch_size: int = 1, use_gpu: bool = False ): + """ Predicts the data labels. @@ -563,3 +567,63 @@ def predict( ]) return results + + +class EmbeddingServing(object): + """ + A base class for embedding model which supports serving. + """ + @serving + def calc_similarity(self, data: List[List[str]]): + """ + Calculate similarities of giving word pairs. + """ + results = [] + for word_pair in data: + if len(word_pair) != 2: + raise RuntimeError( + f'The input must have two words, but got {len(word_pair)}. Please check your inputs.') + if not isinstance(word_pair[0], str) or not isinstance(word_pair[1], str): + raise RuntimeError( + f'The types of text pair must be (str, str), but got' + f' ({type(word_pair[0]).__name__}, {type(word_pair[1]).__name__}). Please check your inputs.') + + for word in word_pair: + if self.get_idx_from_word(word) == \ + self.get_idx_from_word(self.vocab.unk_token): + raise RuntimeError( + f'Word "{word}" is not in vocab. Please check your inputs.') + results.append(str(self.cosine_sim(*word_pair))) + return results + + +class EmbeddingModule(RunModule, EmbeddingServing): + """ + The base class for Embedding models. + """ + base_url = 'https://paddlenlp.bj.bcebos.com/models/embeddings/' + + def _download_vocab(self): + """ + Download vocab from url + """ + url = EMBEDDING_URL_ROOT + '/' + f'vocab.{self.embedding_name}' + get_path_from_url(url, EMBEDDING_HOME) + + def get_vocab_path(self): + """ + Get local vocab path + """ + vocab_path = os.path.join(EMBEDDING_HOME, f'vocab.{self.embedding_name}') + if not os.path.exists(vocab_path): + self._download_vocab() + return vocab_path + + def get_tokenizer(self, *args, **kwargs): + """ + Get tokenizer of embedding module + """ + if self.embedding_name.endswith('.en'): # English + raise NotImplementedError # TODO: (chenxiaojie) add tokenizer of English embedding + else: # Chinese + return JiebaTokenizer(self.vocab) diff --git a/paddlehub/utils/utils.py b/paddlehub/utils/utils.py index 0aa6337c1..4152057df 100644 --- a/paddlehub/utils/utils.py +++ b/paddlehub/utils/utils.py @@ -367,3 +367,23 @@ def reseg_token_label(tokenizer, tokens: List[str], labels: List[str] = None): if len(sub_token) < 2: continue return ret_tokens, None + + +def pad_sequence(ids: List[int], max_seq_len: int, pad_token_id: int): + ''' + Pads a sequence to max_seq_len + ''' + assert len(ids) <= max_seq_len, \ + f'The input length {len(ids)} is greater than max_seq_len {max_seq_len}. '\ + 'Please check the input list and max_seq_len if you really want to pad a sequence.' + return ids[:] + [pad_token_id]*(max_seq_len-len(ids)) + + +def trunc_sequence(ids: List[int], max_seq_len: int): + ''' + Truncates a sequence to max_seq_len + ''' + assert len(ids) >= max_seq_len, \ + f'The input length {len(ids)} is less than max_seq_len {max_seq_len}. ' \ + 'Please check the input list and max_seq_len if you really want to truncate a sequence.' + return ids[:max_seq_len]