forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_eager_test.py
95 lines (71 loc) · 2.84 KB
/
mnist_eager_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow as tf # pylint: disable=g-bad-import-order
from tensorflow.python import eager as tfe # pylint: disable=g-bad-import-order
from official.mnist import mnist
from official.mnist import mnist_eager
from official.utils.misc import keras_utils
def device():
return '/device:GPU:0' if tfe.context.num_gpus() else '/device:CPU:0'
def data_format():
return 'channels_first' if tfe.context.num_gpus() else 'channels_last'
def random_dataset():
batch_size = 64
images = tf.random_normal([batch_size, 784])
labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32)
return tf.data.Dataset.from_tensors((images, labels))
def train(defun=False):
model = mnist.create_model(data_format())
if defun:
model.call = tf.function(model.call)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
dataset = random_dataset()
with tf.device(device()):
mnist_eager.train(model, optimizer, dataset,
step_counter=tf.train.get_or_create_global_step())
def evaluate(defun=False):
model = mnist.create_model(data_format())
dataset = random_dataset()
if defun:
model.call = tf.function(model.call)
with tf.device(device()):
mnist_eager.test(model, dataset)
class MNISTTest(tf.test.TestCase):
"""Run tests for MNIST eager loop.
MNIST eager uses contrib and will not work with TF 2.0. All tests are
disabled if using TF 2.0.
"""
def setUp(self):
if not keras_utils.is_v2_0():
tf.compat.v1.enable_v2_behavior()
super(MNISTTest, self).setUp()
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_train(self):
train(defun=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_evaluate(self):
evaluate(defun=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_train_with_defun(self):
train(defun=True)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_evaluate_with_defun(self):
evaluate(defun=True)
if __name__ == '__main__':
tf.test.main()