-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathstitch_function.py
60 lines (55 loc) · 1.9 KB
/
stitch_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python
# encoding: utf-8
import numpy as np
def horizontal_stitch(I, width):
'''
列扩展,直到宽为width
use alpha blending to smooth the borders in the replication
0 < I < 1
:param I:
:param width:
:return:
'''
Istitched = I
while Istitched.shape[1] < width:
window_size = int(round(I.shape[1] / 4))
left = I[:, (I.shape[1] - window_size) : I.shape[1]]
right = I[:, 0:window_size]
aleft = np.zeros((left.shape[0], window_size))
aright = np.zeros((left.shape[0], window_size))
for i in range(window_size):
aleft[:, i] = left[:, i] * (1 - float(i+1)/window_size)
aright[:, i] = right[:, i] * float(i+1)/window_size
Istitched = np.column_stack(
(Istitched[:, 0:(Istitched.shape[1] - window_size)],
aleft + aright,
Istitched[:, window_size: Istitched.shape[1]])
)
Istitched = Istitched[:, 0:width]
return Istitched
def vertical_stitch(I, height):
'''
行扩展,直到长为height
use alpha blending to smooth the borders in the replication
0 < I < 1
:param I:
:param height:
:return:
'''
Istitched = I
while Istitched.shape[0] < height:
window_size = int(round(I.shape[0] / float(4)))
up = I[(I.shape[0] - window_size):I.shape[0], :]
down = I[0:window_size, :]
aup = np.zeros((window_size, up.shape[1]))
adown = np.zeros((window_size, up.shape[1]))
for i in range(window_size):
aup[i, :] = up[i, :] * (1 - float(i+1)/window_size)
adown[i, :] = down[i, :] * float(i+1)/window_size
Istitched = np.row_stack(
(Istitched[0: Istitched.shape[0] - window_size, :],
aup + adown,
Istitched[window_size: Istitched.shape[0], :])
)
Istitched = Istitched[0: height, :]
return Istitched