-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcar_main.py
222 lines (193 loc) · 7.77 KB
/
car_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from car import car_test
'''
主函数,识别图片的同时,将识别出的文字分类,看是否属于店铺名
'''
from paddleocr import PaddleOCR
from lstm import test
import os
from paddleocr import PaddleOCR
from tools.infer.utility import draw_ocr
from PIL import Image
import pandas as pd
import wx
import re
import wx.xrc
from car.video import video_frame as vf
#图形开始
app = wx.App()
window = wx.Frame(None, title = u"实时识别状态展示", size = (969,150),style = wx.DEFAULT_FRAME_STYLE|wx.TAB_TRAVERSAL)
window.SetSizeHints( wx.DefaultSize, wx.DefaultSize )
gbSizer3 = wx.GridBagSizer( 0, 0 )
gbSizer3.SetFlexibleDirection( wx.BOTH )
gbSizer3.SetNonFlexibleGrowMode( wx.FLEX_GROWMODE_SPECIFIED )
window.m_staticText10 = wx.StaticText( window, wx.ID_ANY, u"正在识别:", wx.DefaultPosition, wx.DefaultSize, 0 )
window.m_staticText10.Wrap( -1 )
gbSizer3.Add( window.m_staticText10, wx.GBPosition( 0, 0 ), wx.GBSpan( 1, 1 ), wx.ALL, 5 )
window.m_staticText11 = wx.StaticText( window, wx.ID_ANY, u"图片名字", wx.DefaultPosition, wx.DefaultSize, 0 )
window.m_staticText11.Wrap( -1 )
window.m_staticText11.SetForegroundColour( wx.Colour( 255, 0, 0 ) )
window.m_staticText11.SetMinSize( wx.Size( 800,30 ) )
gbSizer3.Add( window.m_staticText11, wx.GBPosition( 0, 1 ), wx.GBSpan( 1, 1 ), wx.ALL, 5 )
window.m_staticText12 = wx.StaticText( window, wx.ID_ANY, u"进度:", wx.DefaultPosition, wx.DefaultSize, 0 )
window.m_staticText12.Wrap( -1 )
gbSizer3.Add( window.m_staticText12, wx.GBPosition( 1, 0 ), wx.GBSpan( 1, 1 ), wx.ALL, 5 )
window.m_staticText13 = wx.StaticText( window, wx.ID_ANY, u"正在识别的图片:", wx.DefaultPosition, wx.DefaultSize, 0 )
window.m_staticText13.Wrap( -1 )
gbSizer3.Add( window.m_staticText13, wx.GBPosition( 2, 0 ), wx.GBSpan( 1, 1 ), wx.ALL, 5 )
window.m_gauge1 = wx.Gauge( window, wx.ID_ANY, 100, wx.DefaultPosition, wx.DefaultSize, wx.GA_HORIZONTAL )
window.m_gauge1.SetValue( 0 )
window.m_gauge1.SetMinSize( wx.Size( 800,-1 ) )
gbSizer3.Add( window.m_gauge1, wx.GBPosition( 1, 1 ), wx.GBSpan( 1, 1 ), wx.ALL, 5 )
window.SetSizer( gbSizer3 )
window.Layout()
window.Centre( wx.BOTH )
#图形结束
def pre_save(img_path,save_path,csv_path,m_filePicker11=None):
cechu = []
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
i = 0
names =[]
#abels = []
imgs=[]
one_qian_pic_path = ""
one_hou_pic_path = ""
#存放所有的图片路径
n_qian_pic_path = []
n_hou_pic_path = []
j=0
stR = ""
# 启动窗口
window.Show(True)
jindu_len = len(os.listdir(img_path)) + 2
print("共:"+str(jindu_len-2))
window.m_gauge1.SetRange(jindu_len)
dangqian_jindu = 1
n=0
aaa = []
for img in os.listdir(img_path):
n+=1
window.m_staticText11.SetLabel("正在识别:"+img_path+'/'+img)
print("当前正在识别"+str(dangqian_jindu)+"-->"+"正在识别:"+img_path+'/'+img)
window.m_gauge1.SetValue(dangqian_jindu)
dangqian_jindu = dangqian_jindu + 1
#动态显示进度条
if dangqian_jindu==jindu_len:
window.m_gauge1.SetValue(dangqian_jindu)
print(img_path+'/'+img)
i += 1
result = ocr.ocr(img_path+'/'+img, cls=True)
image = Image.open(img_path+'/'+img).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
# im_show.show()
# im_show.save是保存识别后的图片
im_show.save(save_path+"/"+img)
#存储所有的图片路径
n_qian_pic_path.append(img_path+'/'+img)
n_hou_pic_path.append(save_path+"/"+img)
for line in result:
if line[1][0] =="":
continue
#print("+++",line)
if len(re.findall("[\u4e00-\u9fa5]",str(line[1][0]))) > 2:
continue
if len(str(line[1][0])) < 6:
continue
car_board = one_pred(str(line[1][0]))
aaa.append(car_board)
#print("***",car_board)
if j==0:
one_hou_pic_path = save_path+"/"+img
one_qian_pic_path = img_path+'/'+img
j = j + 1
if str(result) == "None":
continue
dataframe = pd.DataFrame({'图片名': imgs, '车牌号': names})
if csv_path[-3:]=="xls":
dataframe.to_excel(csv_path, index=True)
elif csv_path[-3:]=="csv":
dataframe.to_csv(csv_path, index=True,sep=',')
else:
print("请选择csv或者xls文件")
n = 0
for i in aaa:
if i != None:
if str(i) not in set(cechu):
cechu.append(str(i))
# n += 1
# for i in aaa:
# if i != None:
# if str(i) not in cechu:
# stR = stR + str(i) + "\n"
# n +=1
for p in set(cechu):
print(p)
#print(stR)
stR = stR # + "共识别出的车牌数为:" + str(n)
print("共识别出的车牌数为:" ,len(set(cechu)))
dangqian_jindu = dangqian_jindu + 1
window.m_gauge1.SetValue(dangqian_jindu)
# print("当前正在识别" + str(dangqian_jindu))
# print("+++",cechu)
# print(stR)
return stR,one_qian_pic_path,one_hou_pic_path,n_qian_pic_path,n_hou_pic_path
#图片拼接为视频
import os
import cv2
from PIL import Image
# 图片合成视频
def picvideo(pthoto_path,save_path):
# path = r'C:\Users\Administrator\Desktop\1\huaixiao\\'#文件路径
filelist = os.listdir(pthoto_path) # 获取该目录下的所有文件名
# print(filelist)
# print(pthoto_path+'/'+filelist[1])
size = Image.open(pthoto_path+'/'+filelist[0]).size
# print(size)
'''
fps:
帧率:1秒钟有n张图片写进去[控制一张图片停留5秒钟,那就是帧率为1,重复播放这张图片5次]
如果文件夹下有50张 534*300的图片,这里设置1秒钟播放5张,那么这个视频的时长就是10秒
'''
fps = 7
# size = (591,705) #图片的分辨率片
# time=len(filelist)/fps
# file_path = save_path+'/' + str(int(time)) + ".mp4" # 导出路径
n=len(filelist)
file_path = save_path + "/car_after.mp4"
fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X') # 不同视频编码对应不同视频格式(例:'I','4','2','0' 对应avi格式)
video = cv2.VideoWriter(file_path, fourcc, fps, size)
for item in filelist:
#if item.endswith('.jpg'): # 判断图片后缀是否是.png
item = pthoto_path + '/' + item
img = cv2.imread(item) # 使用opencv读取图像,直接返回numpy.ndarray 对象,通道顺序为BGR ,注意是BGR,通道值默认范围0-255。
video.write(img) # 把图片写进视频
video.release() # 释放
def one_pred(text):
a = text[0]
province = ["京","沪","津","渝","鲁","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","豫","湘","鄂","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","港","澳","台"]
if str(a) in province:
# print(a)
c = car_test.pre(text)
if c == "车牌":
print("\n识别出车牌号为:",text)
return text
else:
return 0
# 视频地址
video_path=r'img/car_befor.mp4'
# 视频分帧的图片地址
photo_path=r'img\video_img'
# 识别后图片的地址
save_path=r'img\video_save'
# 保存scv数据文件的地址
csv_path=r'img\chepai12.csv'
# 视频分帧
vf.fenzhen(video_path,photo_path)
# 预测+保存数据
pre_save(photo_path,save_path,csv_path)
# 视频合成
video_path = r"img"
picvideo(save_path,video_path)