forked from louis-she/sfd.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
104 lines (80 loc) · 3.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import cv2
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
from config import Config
def change_coordinate(coordinates):
"""change top left bottom right to center x center y, width, height"""
width = (coordinates[:, 3] - coordinates[:, 1])[:, np.newaxis]
height = (coordinates[:, 2] - coordinates[:, 0])[:, np.newaxis]
center_x = ((coordinates[:, 3] + coordinates[:, 1]) / 2)[:, np.newaxis]
center_y = ((coordinates[:, 2] + coordinates[:, 0]) / 2)[:, np.newaxis]
return np.concatenate([center_x, center_y, width, height], axis=1)
def change_coordinate_inv(coordinates):
"""center_x, center_y, width, height to top, left, bottom, right"""
top = (coordinates[:, 1] - coordinates[:, 3] / 2)[:, np.newaxis]
left = (coordinates[:, 0] - coordinates[:, 2] / 2)[:, np.newaxis]
bottom = (coordinates[:, 1] + coordinates[:, 3] / 2)[:, np.newaxis]
right = (coordinates[:, 0] + coordinates[:, 2] / 2)[:, np.newaxis]
return np.concatenate([top, left, bottom, right], axis=1)
def seek_model(file_name):
log_dir = Config.LOG_DIR
candidate_a = os.path.join(log_dir, 'models', file_name)
candidate_b = os.path.join(log_dir, 'models', 'epoch_{}.pth.tar'.format(file_name))
candidate_c = file_name
if os.path.isfile(candidate_a):
state_file = candidate_a
elif os.path.isfile(candidate_b):
state_file = candidate_b
elif os.path.isfile(candidate_c):
state_file = candidate_c
else:
raise RuntimeError(
"model file {} is not found".format(file_name)
)
return state_file
def draw_bounding_boxes(image, bounding_boxes):
"""draw bounding box on a image, should only be called in
jupyter notebook context
"""
if type(image) == str:
image = cv2.imread(image)[:, :, ::-1]
else:
image = image[:, :, ::-1]
_, ax = plt.subplots(1)
for bbox in bounding_boxes:
rect = patches.Rectangle(
(bbox[1], bbox[0]), bbox[3] - bbox[1], bbox[2] - bbox[0],
linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.imshow(image)
def save_bounding_boxes_image(image_path, bounding_boxes, dest):
image = cv2.imread(image_path)[:, :, ::-1]
fig, ax = plt.subplots(1)
for bbox in bounding_boxes:
rect = patches.Rectangle(
(bbox[1], bbox[0]), bbox[3] - bbox[1], bbox[2] - bbox[0],
linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.imshow(image)
fig.savefig(dest)
def nms(bboxes_scores, thresh=Config.NMS_THRESHOLD):
[x1, y1, x2, y2, scores] = [bboxes_scores[:, i] for i in range(5)]
order = scores.argsort()[::-1]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
keep_index = []
while order.size > 0:
i = order[0]
keep_index.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep_index