-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodel.py
77 lines (56 loc) · 2.51 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import tensorflow as tf
from keras.layers import Dense, Flatten, Lambda, Activation, MaxPooling2D
from keras.layers.convolutional import Convolution2D
from keras.models import Sequential
from keras.optimizers import Adam
import helper
tf.python.control_flow_ops = tf
number_of_epochs = 8
number_of_samples_per_epoch = 20032
number_of_validation_samples = 6400
learning_rate = 1e-4
activation_relu = 'relu'
# Our model is based on NVIDIA's "End to End Learning for Self-Driving Cars" paper
# Source: https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1.0, input_shape=(64, 64, 3)))
# starts with five convolutional and maxpooling layers
model.add(Convolution2D(24, 5, 5, border_mode='same', subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(36, 5, 5, border_mode='same', subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(48, 5, 5, border_mode='same', subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Flatten())
# Next, five fully connected layers
model.add(Dense(1164))
model.add(Activation(activation_relu))
model.add(Dense(100))
model.add(Activation(activation_relu))
model.add(Dense(50))
model.add(Activation(activation_relu))
model.add(Dense(10))
model.add(Activation(activation_relu))
model.add(Dense(1))
model.summary()
model.compile(optimizer=Adam(learning_rate), loss="mse", )
# create two generators for training and validation
train_gen = helper.generate_next_batch()
validation_gen = helper.generate_next_batch()
history = model.fit_generator(train_gen,
samples_per_epoch=number_of_samples_per_epoch,
nb_epoch=number_of_epochs,
validation_data=validation_gen,
nb_val_samples=number_of_validation_samples,
verbose=1)
# finally save our model and weights
helper.save_model(model)