forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight.py
173 lines (152 loc) · 7.91 KB
/
weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import numpy as np
import torch
from transformers import (BertConfig, BertPreTrainedModel, RobertaConfig,
RobertaPreTrainedModel)
import tensorrt_llm
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx].copy())
elif len(v.shape) == 2:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx].copy())
return None
def load_from_hf_model(tensorrt_llm_model: tensorrt_llm.module.Module,
hf_model: Union[BertPreTrainedModel,
RobertaPreTrainedModel],
hf_model_config: Union[BertConfig, RobertaConfig],
rank=0,
tensor_parallel=1,
fp16=False):
qkv_weight = [[None, None, None]
for _ in range(hf_model_config.num_hidden_layers)]
qkv_bias = [[None, None, None]
for _ in range(hf_model_config.num_hidden_layers)]
torch_dtype = torch.float16 if fp16 else torch.float32
for k, v in hf_model.state_dict().items():
v = v.to(torch_dtype).cpu().numpy()
if 'embeddings.word_embeddings.weight' in k:
tensorrt_llm_model.embedding.vocab_embedding.weight.value = v
elif 'embeddings.position_embeddings.weight' in k:
tensorrt_llm_model.embedding.position_embedding.weight.value = v
elif 'embeddings.token_type_embeddings.weight' in k:
tensorrt_llm_model.embedding.token_embedding.weight.value = v
elif 'embeddings.LayerNorm.weight' in k:
tensorrt_llm_model.embedding.embedding_ln.weight.value = v
elif 'embeddings.LayerNorm.bias' in k:
tensorrt_llm_model.embedding.embedding_ln.bias.value = v
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if 'attention.output.dense.weight' in k:
tensorrt_llm_model.layers[
idx].attention.dense.weight.value = split(v,
tensor_parallel,
rank,
dim=1)
elif 'attention.output.dense.bias' in k:
tensorrt_llm_model.layers[idx].attention.dense.bias.value = v
elif 'attention.output.LayerNorm.weight' in k:
tensorrt_llm_model.layers[idx].input_layernorm.weight.value = v
elif 'attention.output.LayerNorm.bias' in k:
tensorrt_llm_model.layers[idx].input_layernorm.bias.value = v
elif 'intermediate.dense.weight' in k:
tensorrt_llm_model.layers[idx].mlp.fc.weight.value = split(
v, tensor_parallel, rank)
elif 'intermediate.dense.bias' in k:
tensorrt_llm_model.layers[idx].mlp.fc.bias.value = split(
v, tensor_parallel, rank)
elif 'output.dense.weight' in k:
tensorrt_llm_model.layers[idx].mlp.proj.weight.value = split(
v, tensor_parallel, rank, dim=1)
elif 'output.dense.bias' in k:
tensorrt_llm_model.layers[idx].mlp.proj.bias.value = v
elif 'output.LayerNorm.weight' in k:
tensorrt_llm_model.layers[idx].post_layernorm.weight.value = v
elif 'output.LayerNorm.bias' in k:
tensorrt_llm_model.layers[idx].post_layernorm.bias.value = v
elif 'attention.self.query.weight' in k:
qkv_weight[idx][0] = v
elif 'attention.self.query.bias' in k:
qkv_bias[idx][0] = v
elif 'attention.self.key.weight' in k:
qkv_weight[idx][1] = v
elif 'attention.self.key.bias' in k:
qkv_bias[idx][1] = v
elif 'attention.self.value.weight' in k:
qkv_weight[idx][2] = v
elif 'attention.self.value.bias' in k:
qkv_bias[idx][2] = v
for i in range(hf_model_config.num_hidden_layers):
tensorrt_llm_model.layers[i].attention.qkv.weight.value = split(
np.concatenate(qkv_weight[i]), tensor_parallel, rank)
tensorrt_llm_model.layers[i].attention.qkv.bias.value = split(
np.concatenate(qkv_bias[i]), tensor_parallel, rank)
def load_from_hf_qa_model(tensorrt_llm_qa_model: tensorrt_llm.module.Module,
hf_qa_model: Union[BertPreTrainedModel,
RobertaPreTrainedModel],
hf_bert_config: Union[BertConfig, RobertaConfig],
rank=0,
tensor_parallel=1,
fp16=False):
load_from_hf_model(tensorrt_llm_qa_model.bert, hf_qa_model, hf_bert_config,
rank, tensor_parallel, fp16)
states = hf_qa_model.state_dict()
torch_dtype = torch.float16 if fp16 else torch.float32
tensorrt_llm_qa_model.qa_outputs.weight.value = states[
'qa_outputs.weight'].to(torch_dtype).cpu().numpy()
tensorrt_llm_qa_model.qa_outputs.bias.value = states['qa_outputs.bias'].to(
torch_dtype).cpu().numpy()
def load_from_hf_cls_model(tensorrt_llm_cls_model: tensorrt_llm.models.
BertForSequenceClassification,
hf_qa_model: Union[BertPreTrainedModel,
RobertaPreTrainedModel],
hf_bert_config: Union[BertConfig, RobertaConfig],
rank=0,
tensor_parallel=1,
fp16=False):
load_from_hf_model(tensorrt_llm_cls_model.bert, hf_qa_model, hf_bert_config,
rank, tensor_parallel, fp16)
states = hf_qa_model.state_dict()
torch_dtype = torch.float16 if fp16 else torch.float32
if isinstance(hf_qa_model, BertPreTrainedModel):
tensorrt_llm_cls_model.pooler.dense.weight.value = states[
'bert.pooler.dense.weight'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.pooler.dense.bias.value = states[
'bert.pooler.dense.bias'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.classifier.weight.value = states[
'classifier.weight'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.classifier.bias.value = states[
'classifier.bias'].to(torch_dtype).cpu().numpy()
else:
tensorrt_llm_cls_model.classifier.dense.weight.value = states[
'classifier.dense.weight'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.classifier.dense.bias.value = states[
'classifier.dense.bias'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.classifier.out_proj.weight.value = states[
'classifier.out_proj.weight'].to(torch_dtype).cpu().numpy()
tensorrt_llm_cls_model.classifier.out_proj.bias.value = states[
'classifier.out_proj.bias'].to(torch_dtype).cpu().numpy()