-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils_np.py
247 lines (215 loc) · 9.54 KB
/
utils_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import os
import math
import cv2
from sklearn import mixture
from sklearn.mixture import GaussianMixture
from sklearn.mixture.gaussian_mixture import _compute_precision_cholesky
import matplotlib.pyplot as plt
from wemd import computeWEMD
# read a file with extension .float and return a numpy array
def readFloat(name):
f = open(name, 'rb')
if(f.readline().decode("utf-8")) != 'float\n':
raise Exception('float file %s did not contain <float> keyword' % name)
dim = int(f.readline())
dims = []
count = 1
for i in range(0, dim):
d = int(f.readline())
dims.append(d)
count *= d
dims = list(reversed(dims))
data = np.fromfile(f, np.float32, count).reshape(dims)
if dim == 2:
data = np.transpose(data, (0, 1))
elif dim == 3:
data = np.transpose(data, (1, 2, 0))
elif dim == 4:
data = np.transpose(data, (2, 3, 1, 0))
else:
raise Exception('bad float file dimension: %d' % dim)
return data
# read an image amd resize when needed
def decode_img(file_path, width=None, height=None):
img = cv2.imread(file_path)
img = img / 255.0
img = np.subtract(img, 0.4)
if width is not None and height is not None:
img = cv2.resize(img, (width, height), interpolation=cv2.INTER_LANCZOS4)
img = np.expand_dims(img, 0)
img = np.transpose(img, (0, 3, 1, 2))
return img
# read the float file containing the object information
def decode_obj(file_path, id, coeff_x=1.0, coeff_y=1.0):
object = np.expand_dims(np.expand_dims(np.expand_dims(readFloat(file_path)[id], 0), 0), 3).astype(np.float32)
x_tl = object[:, :, 0:1, :] / coeff_x
y_tl = object[:, :, 1:2, :] / coeff_y
x_br = object[:, :, 2:3, :] / coeff_x
y_br = object[:, :, 3:4, :] / coeff_y
object = np.concatenate((x_tl, y_tl, x_br, y_br, object[:, :, 4:6, :]), axis=2)
return object
# draw a set of hypotheses (bounding boxes), object history, and the ground truth on an image
def draw_hyps(img_path, hyps, gt_object, objects):
img = cv2.imread(img_path)
# draw object history
tranparency = {0:0.2, 1:0.5, 2:1.0}
for i in range(3):
overlay = img.copy()
cv2.rectangle(overlay, (int(objects[i, 0, 0, 0, 0]), int(objects[i, 0, 0, 1, 0])),
(int(objects[i, 0, 0, 2, 0]), int(objects[i, 0, 0, 3, 0])), (0, 0, 255), -1)
img = cv2.addWeighted(overlay, tranparency[i], img, 1 - tranparency[i], 0)
# draw the ground truth future
cv2.rectangle(img, (int(gt_object[0, 0, 0, 0]), int(gt_object[0, 0, 1, 0])), (int(gt_object[0, 0, 2, 0]), int(gt_object[0, 0, 3, 0])), (255, 0, 255), -1)
gt_width = gt_object[0, 0, 2, 0] - gt_object[0, 0, 0, 0]
gt_height = gt_object[0, 0, 3, 0] - gt_object[0, 0, 1, 0]
# draw hypotheses (different futures)
for h in hyps:
x1 = int(h[0, 0, 0, 0])
y1 = int(h[0, 1, 0, 0])
x2 = int(x1 + gt_width)
y2 = int(y1 + gt_height)
color = (0, 255, 0)
cv2.rectangle(img, (x1, y1), (x2, y2), color, -1)
return img
# draw a heatmap on an image and save it to a file
def draw_heatmap(img_path, means, sigmas, weights, objects, width, height, output_path, gt=None):
def transparent_cmap(cmap, N=255):
"Copy colormap and set alpha values"
mycmap = cmap
mycmap._init()
mycmap._lut[:, -1] = np.clip(np.linspace(0, 1.0, N + 4), 0, 1.0)
return mycmap
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
# draw history
tranparency = {0: 0.2, 1: 0.5, 2: 1.0}
for i in range(3):
overlay = img.copy()
cv2.rectangle(overlay, (int(objects[i, 0, 0, 0, 0]), int(objects[i, 0, 0, 1, 0])),
(int(objects[i, 0, 0, 2, 0]), int(objects[i, 0, 0, 3, 0])), (255, 0, 0), -1)
img = cv2.addWeighted(overlay, tranparency[i], img, 1 - tranparency[i], 0)
gt_width = gt[0, 0, 2, 0] - gt[0, 0, 0, 0]
gt_height = gt[0, 0, 3, 0] - gt[0, 0, 1, 0]
mapped_means = []
mapped_sigmas = []
for i in range(len(means)):
center_mean = means[i][:, 0:2, :, :] + [gt_width/2, gt_height/2]
center_sigma = sigmas[i][:, 0:2, :, :]
mapped_means.append(center_mean)
mapped_sigmas.append(center_sigma)
x = np.linspace(0, width - 1, width)
y = np.linspace(0, height - 1, height)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
if gt is not None:
cv2.rectangle(img, (int(gt[0, 0, 0, 0]), int(gt[0, 0, 1, 0])),
(int(gt[0, 0, 2, 0]), int(gt[0, 0, 3, 0])), (255, 0, 255), -1)
# construct the GMM
c_means = np.stack([mapped_means[i][0,0:2,0,0] for i in range(len(mapped_means))], axis=0) # (4,2)
c_sigmas = np.stack([mapped_sigmas[i][0,0:2,0,0] for i in range(len(mapped_sigmas))], axis=0) # (4,2)
c_weights = np.concatenate(weights, axis=0)[:,0,0,0] # (4)
clf = mixture.GaussianMixture(n_components=4, covariance_type='diag')
var = c_sigmas * c_sigmas * 2
precisions_cholesky = _compute_precision_cholesky(var, 'diag')
clf.weights_ = c_weights
clf.means_ = c_means
clf.precisions_cholesky_ = precisions_cholesky
clf.covariances_ = var
Z = np.exp(clf.score_samples(XX))
Z = Z.reshape(X.shape)
vmax = np.max(Z)
vmin = np.min(Z)
plt.imshow(img)
plt.contourf(X, Y, Z, cmap=transparent_cmap(plt.cm.jet), vmin=vmin, vmax=vmax)
plt.axis('off')
plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
plt.clf()
# get the NLL score for a sample (GT) given the parameters of the mixture model
def compute_nll(pred_means, pred_sigmas, pred_weights, gt):
means = np.concatenate(pred_means, axis=0)[:, :, 0, 0]
sigmas = np.concatenate(pred_sigmas, axis=0)[:, :, 0, 0]
weights = np.concatenate(pred_weights, axis=0)[:, 0, 0, 0]
gt_loc = gt[:, 0, 0:2, 0]
sum = 0
for i in range(means.shape[0]):
diff = means[i] - gt_loc
diff2 = diff * diff
diff5 = math.sqrt(diff2[0, 0])
diff6 = math.sqrt(diff2[0, 1])
sxe = sigmas[i, 0]
sye = sigmas[i, 1]
sxe_sq_inv = 1.0 / (sxe)
sye_sq_inv = 1.0 / (sye)
c1 = diff5 * sxe_sq_inv
c2 = diff6 * sye_sq_inv
c = c1 + c2
c_exp = math.exp(-c)
sxsy = 4.0 * sxe * sye
sxsy_scaled = 1.0 / (sxsy)
final = c_exp * sxsy_scaled
final_weighted = final * weights[i]
sum += final_weighted
sum = sum if sum > 0 else 1e-10
return math.log(sum) * -1
# returns the closest hypothesis to the ground truth (oracle selection)
def get_best_hyp(hyps, gt):
num_hyps = len(hyps)
gts = np.stack([gt for i in range(0, num_hyps)], axis=1) # n,num,c,1,1
hyps = np.stack(hyps, axis=1) # n,num,c,1,1
def spatial_error(hyps, gts):
diff = np.square(hyps - gts) # n,num,c,1,1
channels_sum = np.sum(diff, axis=2) # n,num,1,1
spatial_epes = np.sqrt(channels_sum) # n,num,1,1
return np.expand_dims(spatial_epes, axis=2) # n,num,1,1,1
def get_best(hypotheses, errors, num_hyps):
indices = np.argmin(errors, axis=1) # n,1,1,1
shape = indices.shape
# compute one-hot encoding
encoding = np.zeros((shape[0],num_hyps,shape[1],shape[2],shape[3]))
encoding[np.arange(shape[0]),indices,np.arange(shape[1]),np.arange(shape[2]),np.arange(shape[3])] = 1 # n,num,1,1,1
hyps_channels = hypotheses.shape[2]
encoding = np.concatenate([encoding for i in range(hyps_channels)], axis=2) # n,num,c,1,1
reduced = hypotheses * encoding # n,num,c,1,1
reduced = np.sum(reduced, axis=1) # n,c,1,1
return reduced
errors = spatial_error(hyps, gts) # n,num,1,1,1
best = get_best(hyps, errors, num_hyps) #n,c,1,1
return best
# compute the final displacement error between a hypothesis and ground truth
def get_FDE(hyp, gt):
diff = np.square(hyp[:, 0:2, :, :] - gt[:, 0:2, :, :])
channels_sum = np.sum(diff, axis=1)
spatial_epe = np.sqrt(channels_sum)
fde = np.mean(spatial_epe)
return fde
# compute the final displacement error between the best hypothesis and the ground truth
def compute_oracle_FDE(hyps, gt):
gt_loc = np.transpose(gt[:,:,0:2,:], [0,2,1,3])
best_hyp = get_best_hyp(hyps, gt_loc)
return get_FDE(best_hyp, gt_loc)
def compute_histogram_gmm(clf):
samples = clf.sample(1000)[0]
Z, xedges, yedges = np.histogram2d(samples[:, 0], samples[:, 1], bins=[np.linspace(0, 319, 320), np.linspace(0, 575, 576)])
return Z
# compute the SEMD metric which evaluate the degree of multimodality of a mixture model
def get_multimodality_score(means, sigmas, weights):
means_stacked = np.concatenate(means, axis=0)[:, :, 0, 0]
sigmas_stacked = np.concatenate(sigmas, axis=0)[:, :, 0, 0]
weights_stacked = np.concatenate(weights, axis=0)[:, 0, 0, 0]
gmm = GaussianMixture(n_components=4, covariance_type='diag')
vars = 2 * sigmas_stacked * sigmas_stacked
precisions_cholesky = _compute_precision_cholesky(vars, 'diag')
gmm.weights_ = weights_stacked
gmm.means_ = means_stacked
gmm.precisions_cholesky_ = precisions_cholesky
gmm.covariances_ = vars
gmm_uni = GaussianMixture(n_components=1, covariance_type='diag')
argmax = np.argmax(gmm.weights_)
gmm_uni.means_ = gmm.means_[argmax, :].reshape([1, 2])
gmm_uni.covariances_ = gmm.covariances_[argmax, :].reshape([1, 2])
gmm_uni.precisions_cholesky_ = gmm.precisions_cholesky_[argmax, :].reshape([1, 2])
gmm_uni.weights_ = np.array([1]).reshape([1])
Z_uni = compute_histogram_gmm(gmm_uni)
Z = compute_histogram_gmm(gmm)
ratio = computeWEMD(Z, Z_uni)
return ratio