-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlagrangian_hydro.py
143 lines (122 loc) · 4.69 KB
/
lagrangian_hydro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
class LagrangianHydro:
def __init__(self, rp):
self.rp = rp
self.input = rp.input
self.geo = rp.geo
self.N = self.geo.N
self.mat = rp.mat
self.fields = rp.fields
# Solve for velocities (Eqs. 14 and 24)
def recomputeVelocity(self, predictor):
u_old = self.fields.u_old
m_half = self.mat.m_half
dt = self.rp.timeSteps[-1]
if predictor:
A = self.geo.A_old
P = self.fields.P_old
E = self.fields.E_old
u = self.fields.u_p
else:
A = (self.geo.A_old + self.geo.A_p) / 2
P = (self.fields.P_old + self.fields.P_p) / 2
E = (self.fields.E_old + self.fields.E_p) / 2
u = self.fields.u
# Compute these if a pressure BC exists
if self.input.hydro_L == 'P' or self.input.hydro_R == 'P':
E_L, E_R = self.computeE_BCs(predictor)
# Velocity BC at left
if self.input.hydro_L == 'u':
u[0] = self.fields.u_L
# Pressure BC at left (Eq. 37)
else:
P_L = self.fields.P_L
coeff_L = A[0] * dt / m_half[0]
u[0] = u_old[0] - coeff_L * (P[0] - P_L + (E[0] - E_L) / 3)
# Velocity BC at right
if self.input.hydro_R == 'u':
u[-1] = self.fields.u_R
# Pressure BC, use Eqs. 37 and 38
else:
P_R = self.fields.P_R
coeff_R = A[-1] * dt / m_half[-1]
u[-1] = u_old[-1] - coeff_R * (P_R - P[-1] + (E_R - E[-1]) / 3)
# Sweep to the right for each interior median mesh cell
for i in range(1, self.N):
coeff = A[i] * dt / m_half[i]
u[i] = u_old[i] - coeff * (P[i] - P[i-1] + (E[i] - E[i-1]) / 3)
# Recompute surface intensity boundary conditions
def computeE_BCs(self, predictor):
if predictor:
T = self.fields.T_old
rho = self.fields.rho_old
dr = self.geo.dr_old
E = self.fields.E_old
else:
T = (self.fields.T_old + self.fields.T_p) / 2
rho = (self.fields.rho_old + self.fields.rho_p) / 2
dr = (self.geo.dr_old + self.geo.dr_p) / 2
E = (self.fields.E_old + self.fields.E_p) / 2
self.mat.recomputeKappa_a(T)
kappa_t_center = self.mat.kappa_a + self.mat.kappa_s
# Reflective condition at left, get from E_1
if self.fields.E_bL is None:
E_bL = E[0]
# Source condition at left
else:
E_bL = self.fields.E_bL
# Reflective condition at right, get from E_N+1/2
if self.fields.E_bR is None:
E_bR = E[-1]
# Source condition at right
else:
E_bR = self.fields.E_bR
# E_1/2 and E_N+1/2 (Eqs. 39 and 40)
weight = 3 * rho[0] * dr[0] * kappa_t_center[0]
E_L = (weight * E_bL + 4 * E[0]) / (weight + 4)
weight = 3 * rho[-1] * dr[-1] * kappa_t_center[-1]
E_R = (weight * E_bR + 4 * E[-1]) / (weight + 4)
return E_L, E_R
# Recmpute density with updated cell volumes
def recomputeDensity(self, predictor):
m = self.mat.m
if predictor:
rho_new = self.fields.rho_p
V_new = self.geo.V_p
else:
rho_new = self.fields.rho
V_new = self.geo.V
for i in range(self.geo.N):
rho_new[i] = m[i] / V_new[i]
# Recompute internal energy
def recomputeInternalEnergy(self, predictor):
# Constants
a = self.input.a
c = self.input.c
C_v = self.mat.C_v
m = self.mat.m
dt = self.rp.timeSteps[-1]
# Predictor step routine
if predictor:
e_old = self.fields.e_old
P_old = self.fields.P_old
A_old = self.geo.A_old
u_pk = (self.fields.u_old + self.fields.u_p) / 2
xi_old = np.zeros(self.geo.N)
for i in range(self.geo.N):
xi_old[i] = -P_old[i] * (A_old[i+1] * u_pk[i+1] - A_old[i] * u_pk[i])
increment = dt / m * xi_old
self.fields.e_p = e_old + increment
# If corrector step
else:
e_p = self.fields.e_p
e_old = self.fields.e_old
P_pk = (self.fields.P_old + self.fields.P_p) / 2
A_pk = (self.geo.A_old + self.geo.A_p) / 2
u_k = (self.fields.u + self.fields.u_old) / 2
xi_k = np.zeros(self.geo.N)
for i in range(self.geo.N):
xi_k[i] = -(m[i] / dt) * (e_p[i] - e_old[i])
xi_k[i] -= P_pk[i] * (A_pk[i+1] * u_k[i+1] - A_pk[i] * u_k[i])
increment = dt / m * xi_k
self.fields.e = e_p + increment