-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmaterials.py
66 lines (59 loc) · 2.49 KB
/
materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
from sys import exit
class Materials:
def __init__(self, rp):
self.rp = rp
self.input = rp.input
self.geo = rp.geo
self.N = rp.geo.N
# Specific energy density (constant)
self.C_v = self.input.C_v
# Compressability coefficient (constant)
self.gamma = self.input.gamma
# Kappa function (bottom of page 1 in codespec)
k1, k2, k3, n = self.input.kappa
self.kappa_func = lambda T: k1 / (k2 * T**n + k3)
# Absorption opacity (defined on spatial cells)
self.kappa_a = np.zeros(self.N)
# Scattering opacity (constant)
self.kappa_s = self.input.kappa_s
# Total opacity defined on cell edges (Eq. 19)
self.kappa_t = np.zeros(self.N + 1)
# Container for masses
self.m = np.zeros(self.N)
self.m_half = np.zeros(self.N + 1)
# Initialize materials that require field variables to be initialized first
def initFromFields(self, fields):
rho_old = fields.rho_old
V_old = self.geo.V_old
# Initialize masses now that rho has been computed
self.m = V_old * rho_old
self.m_half[0] = self.m[0] / 2 # see below Eq. 38
self.m_half[-1] = self.m[-1] / 2 # see below Eq. 38
for i in range(1, self.N):
self.m_half[i] = (V_old[i - 1] * rho_old[i - 1] + V_old[i] * rho_old[i]) / 2
# Recompute kappa_a with a new temperature T (bottom of page 1 in codespec)
def recomputeKappa_a(self, T):
for i in range(self.N):
self.kappa_a[i] = self.kappa_func(T[i])
# Recompute kappa with a new temperature T (Eq. 19)
def recomputeKappa_t(self, T):
a = self.input.a
# Left system boundary
if self.input.rad_L is 'source':
E_bL = self.input.rad_L_val
T_L = ((E_bL / a + T[0]**4) / 2)**(1/4)
self.kappa_t[0] = self.kappa_func(T_L) + self.kappa_s
else:
self.kappa_t[0] = self.kappa_func(T[0]) + self.kappa_s
# Right system boundary
if self.input.rad_R is 'source':
E_bR = self.input.rad_R_val
T_R = ((E_bR / a + T[-1]**4) / 2)**(1/4)
self.kappa_t[-1] = self.kappa_func(T_R) + self.kappa_s
else:
self.kappa_t[-1] = self.kappa_func(T[-1]) + self.kappa_s
# Interior cells
for i in range(1, self.N):
Tedge = ((T[i - 1]**4 + T[i]**4) / 2)**(1 / 4)
self.kappa_t[i] = self.kappa_func(Tedge) + self.kappa_s