-
Notifications
You must be signed in to change notification settings - Fork 7
/
bimodal.cpp
569 lines (433 loc) · 18.9 KB
/
bimodal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
Copyright (c) 2015-2017 Lester Hedges <[email protected]>
Robert Jack <[email protected]>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <iomanip>
#include <iostream>
#include "slsm.h"
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
/*! \file bimodal.cpp
\brief An example showing perimeter minimisation with a shape matching
constraint with a bimodal objective function.
Here we construct a simple example system with two minima separated by
a small free energy barrier. The matched shape is a dumbbell constructed
from two horizontally offset, overlapping circles. The position of the
right-hand dumbbell lobe is shifted vertically by a small amount relative
to the left.
We construct two minima by making the perimeter (objective) sensitivities
a function of the y coordinate of each boundary point, mimicking a
gravitational field. Sensitivities are linearly reduced between top and
bottom of the left-hand lobe, hence within the left lobe it's possible to
form a circle with a smaller perimeter at the same cost.
When a long trajectory is run the shape explores both minima within
the dumbbell, with the time spent in each lobe proportional to the
vertical offset between the lobe centres.
The output file, "bimodal_*.txt", contains the measured x centre of mass,
perimeter, mismatch, and centre of mass position vs time data for the
optmisation run. Level set information for each sample interval is written
to ParaView readable VTK files, "level-set_*.vtk". Boundary segment data
is written to "boundary-segments_*.txt".
*/
// FUNCTION PROTOTYPES
// Constraint sensitivity function prototype.
double computeConstraintSensitivity(const slsm::Coord&, const slsm::LevelSet&);
// Mismatch function prototype.
double computeMismatch(const slsm::Mesh&, const std::vector<double>&);
// Perimeter function prototype.
double computePerimeter(const std::vector<slsm::BoundaryPoint>&);
// Boundary point length function prototype.
double computePointLength(const slsm::BoundaryPoint& point);
// Perimeter weight function prototype.
double computePerimeterWeight(double y);
// Calculate the "centre of mass" of the boundary".
void computeCentreOfMass(const std::vector<slsm::BoundaryPoint>&, double&, double&);
// GLOBALS
unsigned int nDiscrete = 10; // Boundary integral discretisation factor.
double uppergravityCutOff; // The maximum y coordinate at which gravity is active.
double lowergravityCutOff; // The minimum y coordinate at which gravity is active.
double gravityRange; // The vertical separation between dumbbell lobes.
double reduce; // Sensitivity reduction factor.
std::vector<slsm::BoundaryPoint>* points; // Pointer to the boundary points vector.
// MAIN FUNCTION
int main(int argc, char** argv)
{
// Print git commit info, if present.
#ifdef COMMIT
std::cout << "Git commit: " << COMMIT << "\n";
#endif
// Print git branch info, if present.
#ifdef BRANCH
std::cout << "Git branch: " << BRANCH << "\n";
#endif
// Maximum displacement per iteration, in units of the mesh spacing.
// This is the CFL limit.
double moveLimit = 0.05;
// Default temperature of the thermal bath.
double temperature = 0.05;
// Gravitational multiplier (must be between zero and 1).
double gravityMult = 0.02;
// Override temperature if command-line argument is passed.
if (argc > 1) temperature = atof(argv[1]);
// Override gravity multiplier command-line argument is passed.
if (argc > 2) gravityMult = atof(argv[2]);
// Set maximum running time.
double maxTime = 1000000;
// Set sampling interval.
double sampleInterval = 1000;
// Set time of the next sample (take an early snapshot).
double nextSample = 1;
// Width and height of the mesh.
double width = 70;
double height = 60;
// Hole vectors.
std::vector<slsm::Hole> initialHoles;
std::vector<slsm::Hole> targetHoles;
// Create a dumbbell from two horizontally offset holes.
// Centre the dumbell horizontally and vertically.
double xCentre = 0.5*width;
double yCentre = 0.5*height;
// Vertical offset between dumbbell lobes.
double yOffset = 1;
// Horizontal separation of lobe centres is 2.xOffset.
double xOffset = 10;
// Lobe radius.
double radius = 20;
// Push holes into vectors.
targetHoles.push_back(slsm::Hole(xCentre+xOffset, yCentre+yOffset, radius));
targetHoles.push_back(slsm::Hole(xCentre-xOffset, yCentre, radius));
double aa = xOffset / radius;
double area = (M_PI/2.0) + asin(aa) + aa*sqrt(1-aa*aa);
area *= 2.0 * radius * radius;
// Set maximumum area mismatch (as fraction of total area).
double minSizeOfShape = 0.2 / 3.0;
minSizeOfShape *= width*height/area;
// Set the mismatch constraint.
double maxMismatch = area/width/height * (1.0 - minSizeOfShape);
// Store dumbbell data (needed for sensitivity callback).
// They are used for implementing a cutoff for the "gravity".
uppergravityCutOff = targetHoles[0].coord.y + radius;
lowergravityCutOff = targetHoles[0].coord.y - radius;
gravityRange = uppergravityCutOff - lowergravityCutOff;
/* Physics stuff:
The "energy" of a boundary segment is l.g.y where l is length, g is gravity, y is height.
The original idea is that g.y=1 at uppergravityCutOff
and g.y=reduce at lowergravityCutOff
with linear interpolation in between
hence g.(upper-lower) = 1-reduce
g = (1-reduce)/(upper-lower) is the g-field
or
reduce = 1 - g.(upper-lower), which must be positive
hence
0 < g < 1/(upper-lower)
*/
// The variable gravityMult is g.(upper-lower).
reduce = 1.0 - gravityMult;
// Position and size of the initial trial circle.
double initialHoleX = xCentre;
double initialHoleY = 0.5*yCentre;
double initialHoleRad = 0.5*radius;
// Push the trial shape into the vector.
initialHoles.push_back(slsm::Hole(initialHoleX, initialHoleY, initialHoleRad));
// Initialise the level set domain.
slsm::LevelSet levelSet(width, height, initialHoles, targetHoles, moveLimit, 6, true);
// Store the mesh area.
double meshArea = levelSet.mesh.width * levelSet.mesh.height;
// Initialise io object.
slsm::InputOutput io;
// Reinitialise the level set to a signed distance function.
levelSet.reinitialise();
// Initialise the boundary object.
slsm::Boundary boundary;
// Initialise boundary points pointer.
points = &boundary.points;
// Initialise target area fraction vector.
std::vector<double> targetArea(levelSet.mesh.nElements);
// Discretise the target structure.
boundary.discretise(levelSet, true);
io.saveBoundarySegmentsTXT(0, boundary);
// Compute the element area fractions.
levelSet.computeAreaFractions(boundary);
// Store the target area fractions.
for (unsigned int i=0;i<levelSet.mesh.nElements;i++)
targetArea[i] = levelSet.mesh.elements[i].area;
// Perform initial boundary discretisation.
boundary.discretise(levelSet);
// Compute the element area fractions.
levelSet.computeAreaFractions(boundary);
// Compute the initial boundary point normal vectors.
boundary.computeNormalVectors(levelSet);
// Initialise random number generator.
slsm::MersenneTwister rng;
// Number of cycles since signed distance reinitialisation.
unsigned int nReinit = 0;
// Running time.
double runningTime = 0;
// Time measurements.
std::vector<double> times;
// Boundary length measurements (objective).
std::vector<double> lengths;
// Area mismatch measurements (constraint).
std::vector<double> mismatches;
// Centre of mass position measurements.
std::vector<double> xPositions;
std::vector<double> yPositions;
/* Lambda values for the optimiser.
These are reused, i.e. the solution from the current iteration is
used as an estimate for the next, hence we declare the vector
outside of the main loop.
*/
std::vector<double> lambdas(2);
std::cout << "\nStarting bimodal demo...\n\n";
// Print output header.
printf("----------------------------------------------------\n");
printf("%9s %9s %10s %10s %10s\n", "Time", "Length", "Mismatch", "xPosition", "yPosition");
printf("----------------------------------------------------\n");
// Integrate until we exceed the maximum time.
while (runningTime < maxTime)
{
// Initialise the sensitivity object.
slsm::Sensitivity sensitivity;
// Initialise the sensitivity callback.
using namespace std::placeholders;
slsm::SensitivityCallback callback = std::bind(&computePointLength, _1);
// Assign boundary point sensitivities.
for (unsigned int i=0;i<boundary.points.size();i++)
{
boundary.points[i].sensitivities[0] =
sensitivity.computeSensitivity(boundary.points[i], callback);
boundary.points[i].sensitivities[1] =
computeConstraintSensitivity(boundary.points[i].coord, levelSet);
}
// Apply deterministic Ito correction.
sensitivity.itoCorrection(boundary, temperature);
// Time step associated with the iteration.
double timeStep;
// Constraint distance vector.
std::vector<double> constraintDistances;
// Current area mismatch.
double mismatch = computeMismatch(levelSet.mesh, targetArea);
// Push current distance from constraint violation into vector.
constraintDistances.push_back(meshArea*maxMismatch - mismatch);
// Initialise the optimisation object.
slsm::Optimise optimise(boundary.points, constraintDistances,
lambdas, timeStep, levelSet.moveLimit);
// Perform the optimisation.
optimise.solve();
// Extend boundary point velocities to all narrow band nodes.
levelSet.computeVelocities(boundary.points, timeStep, temperature, rng);
// Compute gradient of the signed distance function within the narrow band.
levelSet.computeGradients();
// Update the level set function.
bool isReinitialised = levelSet.update(timeStep);
// Reinitialise the signed distance function, if necessary.
if (!isReinitialised)
{
// Reinitialise at least every 20 iterations.
if (nReinit == 20)
{
levelSet.reinitialise();
nReinit = 0;
}
}
else nReinit = 0;
// Increment the number of steps since reinitialisation.
nReinit++;
// Compute the new discretised boundary.
boundary.discretise(levelSet);
// Compute the element area fractions.
levelSet.computeAreaFractions(boundary);
// Compute the boundary point normal vectors.
boundary.computeNormalVectors(levelSet);
// Increment the time.
runningTime += timeStep;
// Check if the next sample time has been reached.
while (runningTime >= nextSample)
{
// Compute the weighted boundary perimeter.
double length = computePerimeter(boundary.points);
// Compute the centre of mass of the shape.
double xPos, yPos;
computeCentreOfMass(boundary.points, xPos, yPos);
// Record the time, length, mismatch area, and positions.
times.push_back(runningTime);
lengths.push_back(length);
mismatches.push_back(mismatch);
xPositions.push_back(xPos-(width/2.0));
yPositions.push_back(yPos-(width/2.0));
// Update the time of the next sample.
nextSample += sampleInterval;
// Print statistics.
printf("%9.4e %8.4f %10.4f %10.4f %10.4f\n",
runningTime, length, mismatch / meshArea, xPos-(width/2.0), yPos-(height/2.0));
// Write level set and boundary segments to file.
io.saveLevelSetVTK(times.size(), levelSet);
io.saveBoundarySegmentsTXT(times.size(), boundary);
}
}
// Print results to file.
FILE *pFile;
std::ostringstream fileName, num;
num.str("");
fileName.str("");
num << std::fixed << std::setprecision(4) << temperature;
fileName << "bimodal_" << num.str() << ".txt";
pFile = fopen(fileName.str().c_str(), "w");
for (unsigned int i=0;i<times.size();i++)
{
fprintf(pFile, "%lf %lf %lf %lf %lf\n",
times[i] - times[0], lengths[i], mismatches[i] / meshArea, xPositions[i], yPositions[i]);
}
fclose(pFile);
std::cout << "\nDone!\n";
return (EXIT_SUCCESS);
}
// FUNCTION DEFINITIONS
// Constraint sensitivity function definition.
double computeConstraintSensitivity(const slsm::Coord& coord, const slsm::LevelSet& levelSet)
{
/* Interpolate nodal signed distance mismatch to a boundary point using
inverse squared distance weighting. On length scales larger than a
grid spacing we are only concerned with the sign of the mismatch,
i.e. the direction that the boundary should move (out or in) in order
to reduce the mismatch.
*/
// Zero the mismatch.
double mismatch = 0;
// Zero the weighting factor.
double weight = 0;
// Find the node that is cloest to the boundary point.
unsigned int node = levelSet.mesh.getClosestNode(coord);
// Loop over node and all of its neighbours.
for (int i=-1;i<4;i++)
{
// Index of neighbour.
unsigned int n;
// First test the node itself.
if (i < 0) n = node;
// Then its neighbours.
else n = levelSet.mesh.nodes[node].neighbours[i];
// Distance from the boundary point to the node in x & y direction.
double dx = levelSet.mesh.nodes[n].coord.x - coord.x;
double dy = levelSet.mesh.nodes[n].coord.y - coord.y;
// Squared distance.
double rSqd = dx*dx + dy*dy;
// If boundary point lies exactly on a node then use the sign of
// the mismatch at that node.
if (rSqd < 1e-6)
{
// Calculate nodal mismatch.
double m = levelSet.target[n] - levelSet.signedDistance[n];
// Smooth mismatch over a grid spacing.
if (std::abs(m) < 1.0) return m;
// Return the sign of the mismatch.
if (m < 0) return -1.0;
else return 1.0;
}
// Otherwise, update the interpolation estimate.
else
{
mismatch += (levelSet.target[n] - levelSet.signedDistance[n]) / rSqd;
weight += 1.0 / rSqd;
}
}
// Compute weighted mismatch.
mismatch /= weight;
// Smooth mismatch over a grid spacing.
if (std::abs(mismatch) < 1.0) return mismatch;
// Return the sign of the interpolated mismatch.
if (mismatch < 0) return -1.0;
else return 1.0;
}
// Mismatch function definition.
double computeMismatch(const slsm::Mesh& mesh, const std::vector<double>& targetArea)
{
double areaMismatch = 0;
// Compute the total absolute area mismatch.
for (unsigned int i=0;i<mesh.nElements;i++)
areaMismatch += std::abs(targetArea[i] - mesh.elements[i].area);
return areaMismatch;
}
// Weighted perimeter function definition.
double computePerimeter(const std::vector<slsm::BoundaryPoint>& points)
{
double length = 0;
// Compute the total weighted boundary length.
for (unsigned int i=0;i<points.size();i++)
length += 0.5*computePointLength(points[i]);
return length;
}
// Boundary "centre of mass" function definition.
void computeCentreOfMass(const std::vector<slsm::BoundaryPoint>& points, double& x, double& y)
{
// Zero variables.
double length = 0;
x = 0;
y = 0;
// Compute the "centre of mass" of the boundary.
for (unsigned int i=0;i<points.size();i++)
{
// Compute the weighted point length.
double ll = computePointLength(points[i]);
// Update variables.
length += 0.5*ll;
x += points[i].coord.x * 0.5*ll;
y += points[i].coord.y * 0.5*ll;
}
// Normalise.
x /= length;
y /= length;
}
// Boundary point length function definition.
double computePointLength(const slsm::BoundaryPoint& point)
{
double length = 0;
// Store coordinates of the point.
double x1 = point.coord.x;
double y1 = point.coord.y;
// Sum the distance to each neighbour.
for (unsigned int i=0;i<point.nNeighbours;i++)
{
// Store coordinates of the neighbouring point.
double x2 = (*points)[point.neighbours[i]].coord.x;
double y2 = (*points)[point.neighbours[i]].coord.y;
// Compute separation components.
double dx = x2 - x1;
double dy = y2 - y1;
// Compute segment length.
double len = sqrt(dx*dx + dy*dy) / nDiscrete;
// Perform discrete boundary (line) integral.
for (unsigned int j=0;j<nDiscrete;j++)
{
// Compute y position along segment.
double y = y1 + (j+0.5)*dy/nDiscrete;
// Add weighted segment length.
length += computePerimeterWeight(y)*len;
}
}
return length;
}
// Perimeter weight function definition.
double computePerimeterWeight(double y)
{
if (y > uppergravityCutOff) return 1.0;
else if (y < lowergravityCutOff) return reduce;
else
{
// Fractional distance along the gravity range.
double dy = (uppergravityCutOff - y) / gravityRange;
return (1.0 - dy*(1.0 - reduce));
}
}