-
Notifications
You must be signed in to change notification settings - Fork 465
/
Copy pathtrain.py
183 lines (150 loc) · 5.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import torch
import numpy as np
from datetime import datetime
from faster_rcnn import network
from faster_rcnn.faster_rcnn import FasterRCNN, RPN
from faster_rcnn.utils.timer import Timer
import faster_rcnn.roi_data_layer.roidb as rdl_roidb
from faster_rcnn.roi_data_layer.layer import RoIDataLayer
from faster_rcnn.datasets.factory import get_imdb
from faster_rcnn.fast_rcnn.config import cfg, cfg_from_file
try:
from termcolor import cprint
except ImportError:
cprint = None
try:
from pycrayon import CrayonClient
except ImportError:
CrayonClient = None
def log_print(text, color=None, on_color=None, attrs=None):
if cprint is not None:
cprint(text, color=color, on_color=on_color, attrs=attrs)
else:
print(text)
# hyper-parameters
# ------------
imdb_name = 'voc_2007_trainval'
cfg_file = 'experiments/cfgs/faster_rcnn_end2end.yml'
pretrained_model = 'data/pretrained_model/VGG_imagenet.npy'
output_dir = 'models/saved_model3'
start_step = 0
end_step = 100000
lr_decay_steps = {60000, 80000}
lr_decay = 1./10
rand_seed = 1024
_DEBUG = True
use_tensorboard = True
remove_all_log = False # remove all historical experiments in TensorBoard
exp_name = None # the previous experiment name in TensorBoard
# ------------
if rand_seed is not None:
np.random.seed(rand_seed)
# load config
cfg_from_file(cfg_file)
lr = cfg.TRAIN.LEARNING_RATE
momentum = cfg.TRAIN.MOMENTUM
weight_decay = cfg.TRAIN.WEIGHT_DECAY
disp_interval = cfg.TRAIN.DISPLAY
log_interval = cfg.TRAIN.LOG_IMAGE_ITERS
# load data
imdb = get_imdb(imdb_name)
rdl_roidb.prepare_roidb(imdb)
roidb = imdb.roidb
data_layer = RoIDataLayer(roidb, imdb.num_classes)
# load net
net = FasterRCNN(classes=imdb.classes, debug=_DEBUG)
network.weights_normal_init(net, dev=0.01)
network.load_pretrained_npy(net, pretrained_model)
# model_file = '/media/longc/Data/models/VGGnet_fast_rcnn_iter_70000.h5'
# model_file = 'models/saved_model3/faster_rcnn_60000.h5'
# network.load_net(model_file, net)
# exp_name = 'vgg16_02-19_13-24'
# start_step = 60001
# lr /= 10.
# network.weights_normal_init([net.bbox_fc, net.score_fc, net.fc6, net.fc7], dev=0.01)
net.cuda()
net.train()
params = list(net.parameters())
# optimizer = torch.optim.Adam(params[-8:], lr=lr)
optimizer = torch.optim.SGD(params[8:], lr=lr, momentum=momentum, weight_decay=weight_decay)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# tensorboad
use_tensorboard = use_tensorboard and CrayonClient is not None
if use_tensorboard:
cc = CrayonClient(hostname='127.0.0.1')
if remove_all_log:
cc.remove_all_experiments()
if exp_name is None:
exp_name = datetime.now().strftime('vgg16_%m-%d_%H-%M')
exp = cc.create_experiment(exp_name)
else:
exp = cc.open_experiment(exp_name)
# training
train_loss = 0
tp, tf, fg, bg = 0., 0., 0, 0
step_cnt = 0
re_cnt = False
t = Timer()
t.tic()
for step in range(start_step, end_step+1):
# get one batch
blobs = data_layer.forward()
im_data = blobs['data']
im_info = blobs['im_info']
gt_boxes = blobs['gt_boxes']
gt_ishard = blobs['gt_ishard']
dontcare_areas = blobs['dontcare_areas']
# forward
net(im_data, im_info, gt_boxes, gt_ishard, dontcare_areas)
loss = net.loss + net.rpn.loss
if _DEBUG:
tp += float(net.tp)
tf += float(net.tf)
fg += net.fg_cnt
bg += net.bg_cnt
train_loss += loss.data[0]
step_cnt += 1
# backward
optimizer.zero_grad()
loss.backward()
network.clip_gradient(net, 10.)
optimizer.step()
if step % disp_interval == 0:
duration = t.toc(average=False)
fps = step_cnt / duration
log_text = 'step %d, image: %s, loss: %.4f, fps: %.2f (%.2fs per batch)' % (
step, blobs['im_name'], train_loss / step_cnt, fps, 1./fps)
log_print(log_text, color='green', attrs=['bold'])
if _DEBUG:
log_print('\tTP: %.2f%%, TF: %.2f%%, fg/bg=(%d/%d)' % (tp/fg*100., tf/bg*100., fg/step_cnt, bg/step_cnt))
log_print('\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box: %.4f' % (
net.rpn.cross_entropy.data.cpu().numpy()[0], net.rpn.loss_box.data.cpu().numpy()[0],
net.cross_entropy.data.cpu().numpy()[0], net.loss_box.data.cpu().numpy()[0])
)
re_cnt = True
if use_tensorboard and step % log_interval == 0:
exp.add_scalar_value('train_loss', train_loss / step_cnt, step=step)
exp.add_scalar_value('learning_rate', lr, step=step)
if _DEBUG:
exp.add_scalar_value('true_positive', tp/fg*100., step=step)
exp.add_scalar_value('true_negative', tf/bg*100., step=step)
losses = {'rpn_cls': float(net.rpn.cross_entropy.data.cpu().numpy()[0]),
'rpn_box': float(net.rpn.loss_box.data.cpu().numpy()[0]),
'rcnn_cls': float(net.cross_entropy.data.cpu().numpy()[0]),
'rcnn_box': float(net.loss_box.data.cpu().numpy()[0])}
exp.add_scalar_dict(losses, step=step)
if (step % 10000 == 0) and step > 0:
save_name = os.path.join(output_dir, 'faster_rcnn_{}.h5'.format(step))
network.save_net(save_name, net)
print('save model: {}'.format(save_name))
if step in lr_decay_steps:
lr *= lr_decay
optimizer = torch.optim.SGD(params[8:], lr=lr, momentum=momentum, weight_decay=weight_decay)
if re_cnt:
tp, tf, fg, bg = 0., 0., 0, 0
train_loss = 0
step_cnt = 0
t.tic()
re_cnt = False